基于gpu加速PC集群的HPL并行矩阵-矩阵乘法

Qin Wang, Junichi Ohmura, Shan Axida, T. Miyoshi, H. Irie, T. Yoshinaga
{"title":"基于gpu加速PC集群的HPL并行矩阵-矩阵乘法","authors":"Qin Wang, Junichi Ohmura, Shan Axida, T. Miyoshi, H. Irie, T. Yoshinaga","doi":"10.1109/IC-NC.2010.39","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for significantly improving the performance of parallel matrix-matrix multiplication using a GPU-accelerated cluster. For one node, we implement a CPUs-GPU parallel double-precision general matrix-matrix multiplication (dgemm) operation and achieve a performance improvement of 32% as compared to the GPU-only case and 56% as compared to the CPUs-only case. For the entire cluster, we use the overlap GPU acceleration solution to high-performance Linpack (HPL), which eliminates the close dependency between the LU decomposition and the dgemm operation, and achieve a performance improvement of 5.72% as compared to the flat GPU acceleration case.","PeriodicalId":375145,"journal":{"name":"2010 First International Conference on Networking and Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallel Matrix-Matrix Multiplication Based on HPL with a GPU-Accelerated PC Cluster\",\"authors\":\"Qin Wang, Junichi Ohmura, Shan Axida, T. Miyoshi, H. Irie, T. Yoshinaga\",\"doi\":\"10.1109/IC-NC.2010.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach for significantly improving the performance of parallel matrix-matrix multiplication using a GPU-accelerated cluster. For one node, we implement a CPUs-GPU parallel double-precision general matrix-matrix multiplication (dgemm) operation and achieve a performance improvement of 32% as compared to the GPU-only case and 56% as compared to the CPUs-only case. For the entire cluster, we use the overlap GPU acceleration solution to high-performance Linpack (HPL), which eliminates the close dependency between the LU decomposition and the dgemm operation, and achieve a performance improvement of 5.72% as compared to the flat GPU acceleration case.\",\"PeriodicalId\":375145,\"journal\":{\"name\":\"2010 First International Conference on Networking and Computing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First International Conference on Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NC.2010.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NC.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种使用gpu加速集群显著提高并行矩阵-矩阵乘法性能的方法。对于一个节点,我们实现了cpu - gpu并行双精度一般矩阵-矩阵乘法(dgemm)操作,与仅gpu情况相比,性能提高了32%,与仅cpu情况相比,性能提高了56%。对于整个集群,我们将重叠GPU加速解决方案用于高性能Linpack (HPL),该解决方案消除了LU分解与dgemm运算之间的密切依赖关系,与平面GPU加速情况相比,性能提高了5.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Matrix-Matrix Multiplication Based on HPL with a GPU-Accelerated PC Cluster
In this paper, we propose an approach for significantly improving the performance of parallel matrix-matrix multiplication using a GPU-accelerated cluster. For one node, we implement a CPUs-GPU parallel double-precision general matrix-matrix multiplication (dgemm) operation and achieve a performance improvement of 32% as compared to the GPU-only case and 56% as compared to the CPUs-only case. For the entire cluster, we use the overlap GPU acceleration solution to high-performance Linpack (HPL), which eliminates the close dependency between the LU decomposition and the dgemm operation, and achieve a performance improvement of 5.72% as compared to the flat GPU acceleration case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信