新的词对级嵌入提高词对相似度

Nazar Khan, Asma Shaukat
{"title":"新的词对级嵌入提高词对相似度","authors":"Nazar Khan, Asma Shaukat","doi":"10.1109/ICDAR.2017.329","DOIUrl":null,"url":null,"abstract":"We present a novel approach for computing similarity of English word pairs. While many previous approaches compute cosine similarity of individually computed word embeddings, we compute a single embedding for the word pair that is suited for similarity computation. Such embeddings are then used to train a machine learning model. Testing results on MEN and WordSim-353 datasets demonstrate that for the task of word pair similarity, computing word pair embeddings is better than computing word embeddings only.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Word Pair Level Embeddings to Improve Word Pair Similarity\",\"authors\":\"Nazar Khan, Asma Shaukat\",\"doi\":\"10.1109/ICDAR.2017.329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for computing similarity of English word pairs. While many previous approaches compute cosine similarity of individually computed word embeddings, we compute a single embedding for the word pair that is suited for similarity computation. Such embeddings are then used to train a machine learning model. Testing results on MEN and WordSim-353 datasets demonstrate that for the task of word pair similarity, computing word pair embeddings is better than computing word embeddings only.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种计算英语词对相似度的新方法。虽然许多先前的方法计算单独计算的词嵌入的余弦相似度,但我们为适合相似度计算的词对计算单个嵌入。这样的嵌入然后被用来训练机器学习模型。在MEN和WordSim-353数据集上的测试结果表明,对于词对相似度任务,计算词对嵌入比只计算词嵌入效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Word Pair Level Embeddings to Improve Word Pair Similarity
We present a novel approach for computing similarity of English word pairs. While many previous approaches compute cosine similarity of individually computed word embeddings, we compute a single embedding for the word pair that is suited for similarity computation. Such embeddings are then used to train a machine learning model. Testing results on MEN and WordSim-353 datasets demonstrate that for the task of word pair similarity, computing word pair embeddings is better than computing word embeddings only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信