{"title":"基于遗传算法的神经纠错输出分类器","authors":"Mahdi Amina, F. Masulli, S. Rovetta","doi":"10.1109/CIEL.2014.7015745","DOIUrl":null,"url":null,"abstract":"The present study elaborates a probabilistic framework of ECOC technique, via replacement of predesigned ECOC matrix by sufficiently large random codes. Further mathematical grounds of deploying random codes through probability formulations are part of novelty of this study. Random variants of ECOC techniques were applied in previous literatures, however, often failing to deliver sufficient theoretical proof of efficiency of random coding matrix. In this paper a Genetic Algorithm-based neural encoder with redefined operators is designed and trained. A variant of heuristic trimming of ECOC codewords is also deployed to acquire more satisfactory results. The efficacy of proposed approach was validated over a wide set of datasets of UCI Machine Learning Repository and compared against two conventional methods.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic algorithm-based neural error correcting output classifier\",\"authors\":\"Mahdi Amina, F. Masulli, S. Rovetta\",\"doi\":\"10.1109/CIEL.2014.7015745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study elaborates a probabilistic framework of ECOC technique, via replacement of predesigned ECOC matrix by sufficiently large random codes. Further mathematical grounds of deploying random codes through probability formulations are part of novelty of this study. Random variants of ECOC techniques were applied in previous literatures, however, often failing to deliver sufficient theoretical proof of efficiency of random coding matrix. In this paper a Genetic Algorithm-based neural encoder with redefined operators is designed and trained. A variant of heuristic trimming of ECOC codewords is also deployed to acquire more satisfactory results. The efficacy of proposed approach was validated over a wide set of datasets of UCI Machine Learning Repository and compared against two conventional methods.\",\"PeriodicalId\":229765,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEL.2014.7015745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The present study elaborates a probabilistic framework of ECOC technique, via replacement of predesigned ECOC matrix by sufficiently large random codes. Further mathematical grounds of deploying random codes through probability formulations are part of novelty of this study. Random variants of ECOC techniques were applied in previous literatures, however, often failing to deliver sufficient theoretical proof of efficiency of random coding matrix. In this paper a Genetic Algorithm-based neural encoder with redefined operators is designed and trained. A variant of heuristic trimming of ECOC codewords is also deployed to acquire more satisfactory results. The efficacy of proposed approach was validated over a wide set of datasets of UCI Machine Learning Repository and compared against two conventional methods.