基于转换的出院摘要依赖性语法学习器

D. A. Campbell, Stephen B. Johnson
{"title":"基于转换的出院摘要依赖性语法学习器","authors":"D. A. Campbell, Stephen B. Johnson","doi":"10.3115/1118149.1118155","DOIUrl":null,"url":null,"abstract":"NLP systems will be more portable among medical domains if acquisition of semantic lexicons can be facilitated. We are pursuing lexical acquisition through the syntactic relationships of words in medical corpora. Therefore we require a syntactic parser which is flexible, portable, captures head-modifier pairs and does not require a large training set. We have designed a dependency grammar parser that learns through a transformational-based algorithm. We propose a novel design for templates and transformations which capitalize on the dependency structure directly and produces human-readable rules. Our parser achieved a 77% accurate parse training on only 830 sentences. Further work will evaluate the usefulness of this parse for lexical acquisition.","PeriodicalId":339993,"journal":{"name":"ACL Workshop on Natural Language Processing in the Biomedical Domain","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A transformational-based learner for dependency grammars in discharge summaries\",\"authors\":\"D. A. Campbell, Stephen B. Johnson\",\"doi\":\"10.3115/1118149.1118155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NLP systems will be more portable among medical domains if acquisition of semantic lexicons can be facilitated. We are pursuing lexical acquisition through the syntactic relationships of words in medical corpora. Therefore we require a syntactic parser which is flexible, portable, captures head-modifier pairs and does not require a large training set. We have designed a dependency grammar parser that learns through a transformational-based algorithm. We propose a novel design for templates and transformations which capitalize on the dependency structure directly and produces human-readable rules. Our parser achieved a 77% accurate parse training on only 830 sentences. Further work will evaluate the usefulness of this parse for lexical acquisition.\",\"PeriodicalId\":339993,\"journal\":{\"name\":\"ACL Workshop on Natural Language Processing in the Biomedical Domain\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACL Workshop on Natural Language Processing in the Biomedical Domain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118149.1118155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACL Workshop on Natural Language Processing in the Biomedical Domain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118149.1118155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

如果语义词汇的获取能够得到促进,自然语言处理系统将在医学领域中更加便携。我们通过医学语料库中词汇的句法关系来研究词汇习得。因此,我们需要一个灵活的、可移植的、捕获头部修饰符对并且不需要大型训练集的语法解析器。我们设计了一个依赖语法解析器,它通过基于转换的算法进行学习。我们提出了一种新的模板和转换设计,它直接利用依赖结构并产生人类可读的规则。我们的解析器仅对830个句子进行了77%的准确解析训练。进一步的工作将评估这种解析对词汇习得的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transformational-based learner for dependency grammars in discharge summaries
NLP systems will be more portable among medical domains if acquisition of semantic lexicons can be facilitated. We are pursuing lexical acquisition through the syntactic relationships of words in medical corpora. Therefore we require a syntactic parser which is flexible, portable, captures head-modifier pairs and does not require a large training set. We have designed a dependency grammar parser that learns through a transformational-based algorithm. We propose a novel design for templates and transformations which capitalize on the dependency structure directly and produces human-readable rules. Our parser achieved a 77% accurate parse training on only 830 sentences. Further work will evaluate the usefulness of this parse for lexical acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信