{"title":"动态环境下的q学习与经验回放","authors":"Mathijs Pieters, M. Wiering","doi":"10.1109/SSCI.2016.7849368","DOIUrl":null,"url":null,"abstract":"Most research in reinforcement learning has focused on stationary environments. In this paper, we propose several adaptations of Q-learning for a dynamic environment, for both single and multiple agents. The environment consists of a grid of random rewards, where every reward is removed after a visit. We focus on experience replay, a technique that receives a lot of attention nowadays, and combine this method with Q-learning. We compare two variations of experience replay, where experiences are reused based on time or based on the obtained reward. For multi-agent reinforcement learning we compare two variations of policy representation. In the first variation the agents share a Q-function, while in the second variation both agents have a separate Q-function. Furthermore, in both variations we test the effect of reward sharing between the agents. This leads to four different multi-agent reinforcement learning algorithms, from which sharing a Q-function and sharing the rewards is the most cooperative method. The results show that in the single-agent environment both experience replay algorithms significantly outperform standard Q-learning and a greedy benchmark agent. In the multi-agent environment the highest maximum reward sum in a trial is achieved by using one Q-function and reward sharing. The highest mean reward sum is obtained with separate Q-functions and separate rewards.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Q-learning with experience replay in a dynamic environment\",\"authors\":\"Mathijs Pieters, M. Wiering\",\"doi\":\"10.1109/SSCI.2016.7849368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most research in reinforcement learning has focused on stationary environments. In this paper, we propose several adaptations of Q-learning for a dynamic environment, for both single and multiple agents. The environment consists of a grid of random rewards, where every reward is removed after a visit. We focus on experience replay, a technique that receives a lot of attention nowadays, and combine this method with Q-learning. We compare two variations of experience replay, where experiences are reused based on time or based on the obtained reward. For multi-agent reinforcement learning we compare two variations of policy representation. In the first variation the agents share a Q-function, while in the second variation both agents have a separate Q-function. Furthermore, in both variations we test the effect of reward sharing between the agents. This leads to four different multi-agent reinforcement learning algorithms, from which sharing a Q-function and sharing the rewards is the most cooperative method. The results show that in the single-agent environment both experience replay algorithms significantly outperform standard Q-learning and a greedy benchmark agent. In the multi-agent environment the highest maximum reward sum in a trial is achieved by using one Q-function and reward sharing. The highest mean reward sum is obtained with separate Q-functions and separate rewards.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Q-learning with experience replay in a dynamic environment
Most research in reinforcement learning has focused on stationary environments. In this paper, we propose several adaptations of Q-learning for a dynamic environment, for both single and multiple agents. The environment consists of a grid of random rewards, where every reward is removed after a visit. We focus on experience replay, a technique that receives a lot of attention nowadays, and combine this method with Q-learning. We compare two variations of experience replay, where experiences are reused based on time or based on the obtained reward. For multi-agent reinforcement learning we compare two variations of policy representation. In the first variation the agents share a Q-function, while in the second variation both agents have a separate Q-function. Furthermore, in both variations we test the effect of reward sharing between the agents. This leads to four different multi-agent reinforcement learning algorithms, from which sharing a Q-function and sharing the rewards is the most cooperative method. The results show that in the single-agent environment both experience replay algorithms significantly outperform standard Q-learning and a greedy benchmark agent. In the multi-agent environment the highest maximum reward sum in a trial is achieved by using one Q-function and reward sharing. The highest mean reward sum is obtained with separate Q-functions and separate rewards.