25.2第三代10nm DRAM中采用短反馈1分位DFE、低电平摆幅FSS总线和自适应控制体偏置的马赛克架构的16Gb Sub-1V 7.14Gb/s/引脚LPDDR5 SDRAM

Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee
{"title":"25.2第三代10nm DRAM中采用短反馈1分位DFE、低电平摆幅FSS总线和自适应控制体偏置的马赛克架构的16Gb Sub-1V 7.14Gb/s/引脚LPDDR5 SDRAM","authors":"Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee","doi":"10.1109/ISSCC42613.2021.9366050","DOIUrl":null,"url":null,"abstract":"The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM\",\"authors\":\"Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee\",\"doi\":\"10.1109/ISSCC42613.2021.9366050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9366050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9366050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着对高密度、高数据速率和低功耗的需求的增加,移动DRAM的需求也在增加,以支持5G通信、多摄像头和汽车等应用。因此,LPDDR4和LPDDR4X的密度从2Gb[1]增加到16Gb[2],但由于封装尺寸规格的限制,LPDDR5的最大密度只有12Gb[3]:例如496球的FBGA。在这项工作中,引入了马赛克架构,即使在有限的封装尺寸下,也可以将密度提高到16Gb。此外,通过缩短顶部金属的长度和带有专用vref的短反馈感测放大器(SA)来提高I/O性能,用于1抽头DFE。镶嵌架构的副作用是由于1.64×长的总线线,导致内部DRAM的性能下降;然而,全源同步(FSS)总线方案对PVT变化具有鲁棒性,从而减轻了这种情况。此外,为了降低长母线的功耗,在低频模式下采用了低电平摆振(LLS)方案。此外,为了提高功率效率和产量,在第三代10nm DRAM工艺中引入了自适应体偏置(ABB)方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM
The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信