用基于tac的距离场可视化时变特征

Teng-Yok Lee, Han-Wei Shen
{"title":"用基于tac的距离场可视化时变特征","authors":"Teng-Yok Lee, Han-Wei Shen","doi":"10.1109/PACIFICVIS.2009.4906831","DOIUrl":null,"url":null,"abstract":"To analyze time-varying data sets, tracking features over time is often necessary to better understand the dynamic nature of the underlying physical process. Tracking 3D time-varying features, however, is non-trivial when the boundaries of the features cannot be easily defined. In this paper, we propose a new framework to visualize time-varying features and their motion without explicit feature segmentation and tracking. In our framework, a time-varying feature is described by a time series or Time Activity Curve (TAC). To compute the distance, or similarity, between a voxel's time series and the feature, we use the Dynamic Time Warping (DTW) distance metric. The purpose of DTW is to compare the shape similarity between two time series with an optimal warping of time so that the phase shift of the feature in time can be accounted for. After applying DTW to compare each voxel's time series with the feature, a time-invariant distance field can be computed. The amount of time warping required for each voxel to match the feature provides an estimate of the time when the feature is most likely to occur. Based on the TAC-based distance field, several visualization methods can be derived to highlight the position and motion of the feature. We present several case studies to demonstrate and compare the effectiveness of our framework.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Visualizing time-varying features with TAC-based distance fields\",\"authors\":\"Teng-Yok Lee, Han-Wei Shen\",\"doi\":\"10.1109/PACIFICVIS.2009.4906831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze time-varying data sets, tracking features over time is often necessary to better understand the dynamic nature of the underlying physical process. Tracking 3D time-varying features, however, is non-trivial when the boundaries of the features cannot be easily defined. In this paper, we propose a new framework to visualize time-varying features and their motion without explicit feature segmentation and tracking. In our framework, a time-varying feature is described by a time series or Time Activity Curve (TAC). To compute the distance, or similarity, between a voxel's time series and the feature, we use the Dynamic Time Warping (DTW) distance metric. The purpose of DTW is to compare the shape similarity between two time series with an optimal warping of time so that the phase shift of the feature in time can be accounted for. After applying DTW to compare each voxel's time series with the feature, a time-invariant distance field can be computed. The amount of time warping required for each voxel to match the feature provides an estimate of the time when the feature is most likely to occur. Based on the TAC-based distance field, several visualization methods can be derived to highlight the position and motion of the feature. We present several case studies to demonstrate and compare the effectiveness of our framework.\",\"PeriodicalId\":133992,\"journal\":{\"name\":\"2009 IEEE Pacific Visualization Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Pacific Visualization Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2009.4906831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

为了分析时变数据集,跟踪随时间变化的特征通常是必要的,以便更好地理解底层物理过程的动态特性。然而,当特征的边界不容易定义时,跟踪三维时变特征是不容易的。在本文中,我们提出了一种新的框架来可视化时变特征及其运动,而不需要明确的特征分割和跟踪。在我们的框架中,时变特征由时间序列或时间活动曲线(TAC)来描述。为了计算体素的时间序列和特征之间的距离或相似度,我们使用动态时间扭曲(DTW)距离度量。DTW的目的是比较具有最优时间翘曲的两个时间序列之间的形状相似性,从而可以考虑特征在时间上的相移。利用DTW将每个体素的时间序列与特征进行比较后,可以计算出一个定常距离场。每个体素匹配特征所需的时间翘曲量提供了特征最有可能发生的时间估计。在基于tac的距离场的基础上,可以推导出几种可视化方法来突出显示特征的位置和运动。我们提出了几个案例研究来展示和比较我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing time-varying features with TAC-based distance fields
To analyze time-varying data sets, tracking features over time is often necessary to better understand the dynamic nature of the underlying physical process. Tracking 3D time-varying features, however, is non-trivial when the boundaries of the features cannot be easily defined. In this paper, we propose a new framework to visualize time-varying features and their motion without explicit feature segmentation and tracking. In our framework, a time-varying feature is described by a time series or Time Activity Curve (TAC). To compute the distance, or similarity, between a voxel's time series and the feature, we use the Dynamic Time Warping (DTW) distance metric. The purpose of DTW is to compare the shape similarity between two time series with an optimal warping of time so that the phase shift of the feature in time can be accounted for. After applying DTW to compare each voxel's time series with the feature, a time-invariant distance field can be computed. The amount of time warping required for each voxel to match the feature provides an estimate of the time when the feature is most likely to occur. Based on the TAC-based distance field, several visualization methods can be derived to highlight the position and motion of the feature. We present several case studies to demonstrate and compare the effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信