基于层次小波网络的人脸特征定位

R. Feris, J. Gemmell, K. Toyama, V. Krüger
{"title":"基于层次小波网络的人脸特征定位","authors":"R. Feris, J. Gemmell, K. Toyama, V. Krüger","doi":"10.1109/AFGR.2002.1004143","DOIUrl":null,"url":null,"abstract":"We present a technique for facial feature localization using a two-level hierarchical wavelet network. The first level wavelet network is used for face matching, and yields an affine transformation used for a rough approximation of feature locations. Second level wavelet networks for each feature are then used to fine-tune the feature locations. Construction of a training database containing hierarchical wavelet networks of many faces allows features to be detected in most faces. Experiments show that facial feature localization benefits significantly from the hierarchical approach. Results compare favorably with existing techniques for feature localization.","PeriodicalId":364299,"journal":{"name":"Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Hierarchical wavelet networks for facial feature localization\",\"authors\":\"R. Feris, J. Gemmell, K. Toyama, V. Krüger\",\"doi\":\"10.1109/AFGR.2002.1004143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a technique for facial feature localization using a two-level hierarchical wavelet network. The first level wavelet network is used for face matching, and yields an affine transformation used for a rough approximation of feature locations. Second level wavelet networks for each feature are then used to fine-tune the feature locations. Construction of a training database containing hierarchical wavelet networks of many faces allows features to be detected in most faces. Experiments show that facial feature localization benefits significantly from the hierarchical approach. Results compare favorably with existing techniques for feature localization.\",\"PeriodicalId\":364299,\"journal\":{\"name\":\"Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2002.1004143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2002.1004143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

提出了一种基于两级层次小波网络的人脸特征定位方法。第一级小波网络用于人脸匹配,并产生用于特征位置粗略近似的仿射变换。然后使用每个特征的二级小波网络对特征位置进行微调。构建包含多人脸分层小波网络的训练数据库,可以检测到大多数人脸的特征。实验表明,分层方法对人脸特征定位有显著的好处。结果与现有的特征定位技术比较有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical wavelet networks for facial feature localization
We present a technique for facial feature localization using a two-level hierarchical wavelet network. The first level wavelet network is used for face matching, and yields an affine transformation used for a rough approximation of feature locations. Second level wavelet networks for each feature are then used to fine-tune the feature locations. Construction of a training database containing hierarchical wavelet networks of many faces allows features to be detected in most faces. Experiments show that facial feature localization benefits significantly from the hierarchical approach. Results compare favorably with existing techniques for feature localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信