{"title":"基于最近邻规则的结构风险最小化","authors":"A. Hamza, H. Krim, Bilge Karaçali","doi":"10.1109/ICASSP.2003.1201643","DOIUrl":null,"url":null,"abstract":"We present a novel nearest neighbor rule-based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional support vector machines, and achieves a nearly comparable test error performance.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural risk minimization using nearest neighbor rule\",\"authors\":\"A. Hamza, H. Krim, Bilge Karaçali\",\"doi\":\"10.1109/ICASSP.2003.1201643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel nearest neighbor rule-based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional support vector machines, and achieves a nearly comparable test error performance.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1201643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1201643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural risk minimization using nearest neighbor rule
We present a novel nearest neighbor rule-based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional support vector machines, and achieves a nearly comparable test error performance.