演示流级开关推理

Michele Gucciardo, Aristide T.-J. Akem, Beyza Bütün, M. Fiore
{"title":"演示流级开关推理","authors":"Michele Gucciardo, Aristide T.-J. Akem, Beyza Bütün, M. Fiore","doi":"10.1109/INFOCOMWKSHPS57453.2023.10225967","DOIUrl":null,"url":null,"abstract":"Existing approaches for in-switch inference with Random Forest (RF) models that can run on production-level hardware do not support flow-level features and have limited scalability to the task size. This leads to performance barriers when tackling complex inference problems with sizable decision spaces. Flowrest is a complete RF model framework that fills existing gaps in the existing literature and enables practical flow-level inference in commercial programmable switches. In this demonstration, we exhibit how Flowrest can classify individual traffic flows at line rate in an experimental platform based on Intel Tofino switches. To this end, we run experiments with real-world measurement data, and show how Flowrest yields improvements in accuracy with respect to solutions that are limited to packet-level inference in programmable hardware.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstrating Flow-Level In-Switch Inference\",\"authors\":\"Michele Gucciardo, Aristide T.-J. Akem, Beyza Bütün, M. Fiore\",\"doi\":\"10.1109/INFOCOMWKSHPS57453.2023.10225967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches for in-switch inference with Random Forest (RF) models that can run on production-level hardware do not support flow-level features and have limited scalability to the task size. This leads to performance barriers when tackling complex inference problems with sizable decision spaces. Flowrest is a complete RF model framework that fills existing gaps in the existing literature and enables practical flow-level inference in commercial programmable switches. In this demonstration, we exhibit how Flowrest can classify individual traffic flows at line rate in an experimental platform based on Intel Tofino switches. To this end, we run experiments with real-world measurement data, and show how Flowrest yields improvements in accuracy with respect to solutions that are limited to packet-level inference in programmable hardware.\",\"PeriodicalId\":354290,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用随机森林(RF)模型进行交换推理的现有方法可以在生产级硬件上运行,但不支持流级特性,并且对任务大小的可扩展性有限。在处理具有较大决策空间的复杂推理问题时,这会导致性能障碍。Flowrest是一个完整的RF模型框架,填补了现有文献中的现有空白,并在商业可编程交换机中实现了实际的流级推断。在这个演示中,我们展示了Flowrest如何在基于Intel Tofino交换机的实验平台上以线率对单个流量进行分类。为此,我们对真实世界的测量数据进行了实验,并展示了Flowrest如何在解决方案方面提高精度,这些解决方案仅限于可编程硬件中的数据包级推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstrating Flow-Level In-Switch Inference
Existing approaches for in-switch inference with Random Forest (RF) models that can run on production-level hardware do not support flow-level features and have limited scalability to the task size. This leads to performance barriers when tackling complex inference problems with sizable decision spaces. Flowrest is a complete RF model framework that fills existing gaps in the existing literature and enables practical flow-level inference in commercial programmable switches. In this demonstration, we exhibit how Flowrest can classify individual traffic flows at line rate in an experimental platform based on Intel Tofino switches. To this end, we run experiments with real-world measurement data, and show how Flowrest yields improvements in accuracy with respect to solutions that are limited to packet-level inference in programmable hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信