预测与免疫相关过程相关的单基因

C. Spieth, F. Streichert, N. Speer, C. Sinzger, Kathrin Eberhard, A. Zell
{"title":"预测与免疫相关过程相关的单基因","authors":"C. Spieth, F. Streichert, N. Speer, C. Sinzger, Kathrin Eberhard, A. Zell","doi":"10.1109/CIBCB.2005.1594955","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of predicting gene activities by finding gene regulatory dependencies in experimental DNA microarray data. Only few approaches to infer the dependencies of complete gene interconnectivity networks can be found in the literature. Due to the limited number of available data, the inferring problem is under-determined and ambiguous. Therefore, we introduce a new algorithm to infer relationships only between selected genes and the unknown gene network. This method is able to predict gene activation by mathematical modeling of the network and its simulation. The parameters of the mathematical model are determined by optimization with evolutionary algorithms. In this paper we will show that our approach is able to correctly predict gene responses in immune related regulatory processes and correctly identify some of the true genomic relationships of these genes.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Single Genes Related to Immune-Relevant Processes\",\"authors\":\"C. Spieth, F. Streichert, N. Speer, C. Sinzger, Kathrin Eberhard, A. Zell\",\"doi\":\"10.1109/CIBCB.2005.1594955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of predicting gene activities by finding gene regulatory dependencies in experimental DNA microarray data. Only few approaches to infer the dependencies of complete gene interconnectivity networks can be found in the literature. Due to the limited number of available data, the inferring problem is under-determined and ambiguous. Therefore, we introduce a new algorithm to infer relationships only between selected genes and the unknown gene network. This method is able to predict gene activation by mathematical modeling of the network and its simulation. The parameters of the mathematical model are determined by optimization with evolutionary algorithms. In this paper we will show that our approach is able to correctly predict gene responses in immune related regulatory processes and correctly identify some of the true genomic relationships of these genes.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们解决了通过在实验DNA微阵列数据中发现基因调控依赖关系来预测基因活动的问题。在文献中,只有很少的方法可以推断完整基因互联网络的依赖性。由于可用数据的数量有限,推理问题是不确定的和模糊的。因此,我们引入了一种新的算法来推断所选基因与未知基因网络之间的关系。该方法通过对神经网络的数学建模和仿真来预测基因的激活。采用进化算法优化确定数学模型参数。在本文中,我们将证明我们的方法能够正确预测免疫相关调控过程中的基因反应,并正确识别这些基因的一些真正的基因组关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Single Genes Related to Immune-Relevant Processes
In this paper we address the problem of predicting gene activities by finding gene regulatory dependencies in experimental DNA microarray data. Only few approaches to infer the dependencies of complete gene interconnectivity networks can be found in the literature. Due to the limited number of available data, the inferring problem is under-determined and ambiguous. Therefore, we introduce a new algorithm to infer relationships only between selected genes and the unknown gene network. This method is able to predict gene activation by mathematical modeling of the network and its simulation. The parameters of the mathematical model are determined by optimization with evolutionary algorithms. In this paper we will show that our approach is able to correctly predict gene responses in immune related regulatory processes and correctly identify some of the true genomic relationships of these genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信