{"title":"关于极大值和极小值的几乎确定的中心极限定理","authors":"Liu Ke, Ren Xiang, Jiang Huanjun","doi":"10.1109/MEC.2011.6025877","DOIUrl":null,"url":null,"abstract":"We prove an almost sure central limit theorem on maxima and minima: lim<inf>n→∞</inf> 1/log n Σ<sup>n</sup><inf>k=1</inf> 1/k I (V<inf>k</inf> < m<inf>k</inf> ≤ M<inf>k</inf> ≤ μ<inf>k</inf>)=e<sup>− T+η</sup> a.s. as the Stationary Gaussian sequence with covariance r<inf>n</inf> under the condition 1/n Σ<inf>k=1</inf>|r<inf>k</inf>|log k exp{γ|r<inf>k</inf>|log k} ≪ (log log n)<sup>−(1+ε)</sup>","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Almost sure central limit theorem on maxima and minima\",\"authors\":\"Liu Ke, Ren Xiang, Jiang Huanjun\",\"doi\":\"10.1109/MEC.2011.6025877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an almost sure central limit theorem on maxima and minima: lim<inf>n→∞</inf> 1/log n Σ<sup>n</sup><inf>k=1</inf> 1/k I (V<inf>k</inf> < m<inf>k</inf> ≤ M<inf>k</inf> ≤ μ<inf>k</inf>)=e<sup>− T+η</sup> a.s. as the Stationary Gaussian sequence with covariance r<inf>n</inf> under the condition 1/n Σ<inf>k=1</inf>|r<inf>k</inf>|log k exp{γ|r<inf>k</inf>|log k} ≪ (log log n)<sup>−(1+ε)</sup>\",\"PeriodicalId\":386083,\"journal\":{\"name\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEC.2011.6025877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
在1/n Σk=1|rk|log k exp{γ|rk|log k}≪(log log n)−(1+ε)的条件下,我们证明了一个几乎确定的最大值和最小值中心极限定理:limn→∞1/log n Σnk=1 1/k I (Vk < mk≤mk≤μk)=e−T+η。
Almost sure central limit theorem on maxima and minima
We prove an almost sure central limit theorem on maxima and minima: limn→∞ 1/log n Σnk=1 1/k I (Vk < mk ≤ Mk ≤ μk)=e− T+η a.s. as the Stationary Gaussian sequence with covariance rn under the condition 1/n Σk=1|rk|log k exp{γ|rk|log k} ≪ (log log n)−(1+ε)