基于TensorFlow的机器学习神经网络模型室内定位

Bojun Zheng, Takefumi Masuda, Tsugumichi Shibata
{"title":"基于TensorFlow的机器学习神经网络模型室内定位","authors":"Bojun Zheng, Takefumi Masuda, Tsugumichi Shibata","doi":"10.1109/ISPACS51563.2021.9651131","DOIUrl":null,"url":null,"abstract":"Utilization of machine learning is effective in improving the accuracy of indoor positioning systems. We constructed an experimental positioning trial system in our laboratory for the study of watching over the elderly using a wearable sensor with the air interface of EnOcean wireless standard. The results confirmed that the position estimation accuracy was improved by applying machine learning using a neural network model of TensorFlow. The neural network enables highly accurate position estimation in consideration of the complex indoor radio wave environment by learning the mapping from the RSS data space to the physical space. In this paper, we show the necessity of machine learning based on the observed RSS data set and illustrate the effect of improving accuracy for the case of EnOcean air interface.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Indoor Positioning with a Neural Network Model of TensorFlow for Machine Learning\",\"authors\":\"Bojun Zheng, Takefumi Masuda, Tsugumichi Shibata\",\"doi\":\"10.1109/ISPACS51563.2021.9651131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilization of machine learning is effective in improving the accuracy of indoor positioning systems. We constructed an experimental positioning trial system in our laboratory for the study of watching over the elderly using a wearable sensor with the air interface of EnOcean wireless standard. The results confirmed that the position estimation accuracy was improved by applying machine learning using a neural network model of TensorFlow. The neural network enables highly accurate position estimation in consideration of the complex indoor radio wave environment by learning the mapping from the RSS data space to the physical space. In this paper, we show the necessity of machine learning based on the observed RSS data set and illustrate the effect of improving accuracy for the case of EnOcean air interface.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用机器学习可以有效地提高室内定位系统的精度。我们在实验室搭建了一套基于EnOcean无线标准空中接口的可穿戴传感器的老年人监护实验定位试验系统。结果表明,利用TensorFlow神经网络模型进行机器学习,可以提高位置估计的精度。神经网络通过学习从RSS数据空间到物理空间的映射,在考虑到复杂的室内无线电波环境的情况下,实现了高精度的位置估计。在本文中,我们展示了基于观测RSS数据集的机器学习的必要性,并举例说明了以EnOcean空中接口为例提高精度的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Indoor Positioning with a Neural Network Model of TensorFlow for Machine Learning
Utilization of machine learning is effective in improving the accuracy of indoor positioning systems. We constructed an experimental positioning trial system in our laboratory for the study of watching over the elderly using a wearable sensor with the air interface of EnOcean wireless standard. The results confirmed that the position estimation accuracy was improved by applying machine learning using a neural network model of TensorFlow. The neural network enables highly accurate position estimation in consideration of the complex indoor radio wave environment by learning the mapping from the RSS data space to the physical space. In this paper, we show the necessity of machine learning based on the observed RSS data set and illustrate the effect of improving accuracy for the case of EnOcean air interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信