一类求解无导数非线性方程的最优八阶迭代法

Laila A. Alnaser
{"title":"一类求解无导数非线性方程的最优八阶迭代法","authors":"Laila A. Alnaser","doi":"10.37418/amsj.12.2.7","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to develop new class of optimal iterative methods that do not need any derivative evaluations for solving nonlinear equations. Those new methods consist of an approximation of the eighth order and require four function evaluations per iteration which support the Kung-Traub assumption on optimal order for without memory schemes. Lastly, to show those new methods' performance and effectiveness, they are compared numerically with other similar methods in high-precision computation.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CLASS OF OPTIMAL EIGHTH ORDER ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS WITHOUT DERIVATIVES\",\"authors\":\"Laila A. Alnaser\",\"doi\":\"10.37418/amsj.12.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to develop new class of optimal iterative methods that do not need any derivative evaluations for solving nonlinear equations. Those new methods consist of an approximation of the eighth order and require four function evaluations per iteration which support the Kung-Traub assumption on optimal order for without memory schemes. Lastly, to show those new methods' performance and effectiveness, they are compared numerically with other similar methods in high-precision computation.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是发展一类新的不需要任何导数求值的最优迭代方法来求解非线性方程。这些新方法由近似八阶组成,每次迭代需要四次函数求值,这支持无内存方案的最优顺序的Kung-Traub假设。最后,将这些新方法与其他类似方法进行了高精度计算的数值比较,以证明这些新方法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CLASS OF OPTIMAL EIGHTH ORDER ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS WITHOUT DERIVATIVES
The objective of this paper is to develop new class of optimal iterative methods that do not need any derivative evaluations for solving nonlinear equations. Those new methods consist of an approximation of the eighth order and require four function evaluations per iteration which support the Kung-Traub assumption on optimal order for without memory schemes. Lastly, to show those new methods' performance and effectiveness, they are compared numerically with other similar methods in high-precision computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信