基于在线支持向量机的网页预测

Zhili Zhang, Changgeng Guo, Shu Yu, Deyu Qi, Songqian Long
{"title":"基于在线支持向量机的网页预测","authors":"Zhili Zhang, Changgeng Guo, Shu Yu, Deyu Qi, Songqian Long","doi":"10.1109/ICTAI.2005.128","DOIUrl":null,"url":null,"abstract":"In this paper, a SVM-based online learning algorithm is proposed and applied to the problem of Web prediction. A method to construct an online LS-SVM multi-class learning model has been presented. This method is able to capture the inherent sequentiality of Web visits and successfully predict the future accesses. The experimental results show the effective performance of our method","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Web prediction using online support vector machine\",\"authors\":\"Zhili Zhang, Changgeng Guo, Shu Yu, Deyu Qi, Songqian Long\",\"doi\":\"10.1109/ICTAI.2005.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a SVM-based online learning algorithm is proposed and applied to the problem of Web prediction. A method to construct an online LS-SVM multi-class learning model has been presented. This method is able to capture the inherent sequentiality of Web visits and successfully predict the future accesses. The experimental results show the effective performance of our method\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于支持向量机的在线学习算法,并将其应用于Web预测问题。提出了一种构建在线LS-SVM多类学习模型的方法。该方法能够捕获Web访问的固有顺序,并成功地预测未来的访问。实验结果表明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web prediction using online support vector machine
In this paper, a SVM-based online learning algorithm is proposed and applied to the problem of Web prediction. A method to construct an online LS-SVM multi-class learning model has been presented. This method is able to capture the inherent sequentiality of Web visits and successfully predict the future accesses. The experimental results show the effective performance of our method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信