Fasteriva:基于负熵和最大-最小原则的独立向量分析更新规则

Andreas Brendel, Walter Kellermann
{"title":"Fasteriva:基于负熵和最大-最小原则的独立向量分析更新规则","authors":"Andreas Brendel, Walter Kellermann","doi":"10.1109/WASPAA52581.2021.9632790","DOIUrl":null,"url":null,"abstract":"Algorithms for Blind Source Separation (BSS) of acoustic signals require efficient and fast converging optimization strategies to adapt to nonstationary signal statistics and time-varying acoustic scenarios. In this paper, we derive fast converging update rules from a negentropy perspective, which are based on the Majorize-Minimize (MM) principle and eigenvalue decomposition. The presented update rules are shown to outperform competing state-of-the-art methods in terms of convergence speed at a comparable runtime due to the restriction to unitary demixing matrices. This is demonstrated by experiments with recorded real-world data.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fasteriva: Update Rules for Independent Vector Analysis Based on Negentropy and the Majorize-Minimize Principle\",\"authors\":\"Andreas Brendel, Walter Kellermann\",\"doi\":\"10.1109/WASPAA52581.2021.9632790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms for Blind Source Separation (BSS) of acoustic signals require efficient and fast converging optimization strategies to adapt to nonstationary signal statistics and time-varying acoustic scenarios. In this paper, we derive fast converging update rules from a negentropy perspective, which are based on the Majorize-Minimize (MM) principle and eigenvalue decomposition. The presented update rules are shown to outperform competing state-of-the-art methods in terms of convergence speed at a comparable runtime due to the restriction to unitary demixing matrices. This is demonstrated by experiments with recorded real-world data.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

声学信号盲源分离算法需要高效、快速的收敛优化策略,以适应非平稳信号统计和时变声学场景。本文从负熵的角度出发,基于最大最小化原理和特征值分解,导出了快速收敛的更新规则。由于对统一分解矩阵的限制,所提出的更新规则在可比运行时的收敛速度方面优于竞争的最先进的方法。这是通过记录真实世界数据的实验证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fasteriva: Update Rules for Independent Vector Analysis Based on Negentropy and the Majorize-Minimize Principle
Algorithms for Blind Source Separation (BSS) of acoustic signals require efficient and fast converging optimization strategies to adapt to nonstationary signal statistics and time-varying acoustic scenarios. In this paper, we derive fast converging update rules from a negentropy perspective, which are based on the Majorize-Minimize (MM) principle and eigenvalue decomposition. The presented update rules are shown to outperform competing state-of-the-art methods in terms of convergence speed at a comparable runtime due to the restriction to unitary demixing matrices. This is demonstrated by experiments with recorded real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信