风车和四分之一转弯

R. Schwartz
{"title":"风车和四分之一转弯","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.18","DOIUrl":null,"url":null,"abstract":"This chapter is the first of three that will prove a generalization of the Graph Master Picture Theorem which works for any convex polygon P without parallel sides. The final result is Theorem 16.9, though Theorems 15.1 and 16.1 are even more general. Let θ‎ denote the second iterate of the outer billiards map defined on R\n 2 − P. Section 14.2 generalizes a construction in [S1] and defines a map closely related to θ‎, called the pinwheel map. Section 14.3 shows that, for the purposes of studying unbounded orbits, the pinwheel map carries all the information contained in θ‎. Section 14.4 will defines another dynamical system called a quarter turn composition. A QTC is a certain kind of piecewise affine map of the infinite strip S of width 1 centered on the X-axis. Section 14.5 shows that the pinwheel map naturally gives rise to a QTC and indeed the pinwheel map and the QTC are conjugate. Section 14.6 explains how this all works for kites.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinwheels and Quarter Turns\",\"authors\":\"R. Schwartz\",\"doi\":\"10.2307/j.ctv5rf6tz.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter is the first of three that will prove a generalization of the Graph Master Picture Theorem which works for any convex polygon P without parallel sides. The final result is Theorem 16.9, though Theorems 15.1 and 16.1 are even more general. Let θ‎ denote the second iterate of the outer billiards map defined on R\\n 2 − P. Section 14.2 generalizes a construction in [S1] and defines a map closely related to θ‎, called the pinwheel map. Section 14.3 shows that, for the purposes of studying unbounded orbits, the pinwheel map carries all the information contained in θ‎. Section 14.4 will defines another dynamical system called a quarter turn composition. A QTC is a certain kind of piecewise affine map of the infinite strip S of width 1 centered on the X-axis. Section 14.5 shows that the pinwheel map naturally gives rise to a QTC and indeed the pinwheel map and the QTC are conjugate. Section 14.6 explains how this all works for kites.\",\"PeriodicalId\":205299,\"journal\":{\"name\":\"The Plaid Model\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plaid Model\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv5rf6tz.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章是三章中的第一章,将证明图主图定理的推广,该定理适用于任何没有平行边的凸多边形P。最后的结果是定理16.9,尽管定理15.1和16.1更加通用。第14.2节推广了[S1]中的一个构造,并定义了一个与θ θ密切相关的映射,称为风车映射。第14.3节表明,为了研究无界轨道,风车图携带了θ′中包含的所有信息。第14.4节将定义另一个动力系统,称为四分之一转组合。QTC是以x轴为中心的宽度为1的无限条S的一类分段仿射映射。第14.5节表明,风车映射自然地产生QTC,而且风车映射和QTC确实是共轭的。第14.6节解释了这一切是如何为风筝工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pinwheels and Quarter Turns
This chapter is the first of three that will prove a generalization of the Graph Master Picture Theorem which works for any convex polygon P without parallel sides. The final result is Theorem 16.9, though Theorems 15.1 and 16.1 are even more general. Let θ‎ denote the second iterate of the outer billiards map defined on R 2 − P. Section 14.2 generalizes a construction in [S1] and defines a map closely related to θ‎, called the pinwheel map. Section 14.3 shows that, for the purposes of studying unbounded orbits, the pinwheel map carries all the information contained in θ‎. Section 14.4 will defines another dynamical system called a quarter turn composition. A QTC is a certain kind of piecewise affine map of the infinite strip S of width 1 centered on the X-axis. Section 14.5 shows that the pinwheel map naturally gives rise to a QTC and indeed the pinwheel map and the QTC are conjugate. Section 14.6 explains how this all works for kites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信