分组交换OBP卫星中拥塞控制的神经网络方法

H. Mehrvar, T. Le-Ngoc
{"title":"分组交换OBP卫星中拥塞控制的神经网络方法","authors":"H. Mehrvar, T. Le-Ngoc","doi":"10.1109/ICC.1995.524215","DOIUrl":null,"url":null,"abstract":"The paper investigates the application of neural networks in a packet switch OBP satellite system to estimate the traffic intensity in the downlink queue and to predict the traffic load status. Two neural networks are used. The first one estimates the traffic intensity from the number of packets that arrive in a frame and the other calculates the congestion probability in the next two round trip delay. We show that in this case the linear estimator trained by a special signal outperforms the nonlinear one. Also, due to the long term dependency in the traffic and the validity of the Poisson model for a very short interval, the congestion probability formula is approximated with a neural network.","PeriodicalId":241383,"journal":{"name":"Proceedings IEEE International Conference on Communications ICC '95","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"ANN approach for congestion control in packet switch OBP satellite\",\"authors\":\"H. Mehrvar, T. Le-Ngoc\",\"doi\":\"10.1109/ICC.1995.524215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the application of neural networks in a packet switch OBP satellite system to estimate the traffic intensity in the downlink queue and to predict the traffic load status. Two neural networks are used. The first one estimates the traffic intensity from the number of packets that arrive in a frame and the other calculates the congestion probability in the next two round trip delay. We show that in this case the linear estimator trained by a special signal outperforms the nonlinear one. Also, due to the long term dependency in the traffic and the validity of the Poisson model for a very short interval, the congestion probability formula is approximated with a neural network.\",\"PeriodicalId\":241383,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.1995.524215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Communications ICC '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1995.524215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了神经网络在分组交换OBP卫星系统中的应用,用于估计下行队列中的流量强度和预测业务负载状态。使用了两个神经网络。第一种算法根据帧中到达的数据包数量估计流量强度,另一种算法计算下两个往返延迟中的拥塞概率。我们证明了在这种情况下,由特殊信号训练的线性估计器优于非线性估计器。此外,由于交通的长期依赖性和泊松模型在很短时间内的有效性,用神经网络逼近了拥塞概率公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN approach for congestion control in packet switch OBP satellite
The paper investigates the application of neural networks in a packet switch OBP satellite system to estimate the traffic intensity in the downlink queue and to predict the traffic load status. Two neural networks are used. The first one estimates the traffic intensity from the number of packets that arrive in a frame and the other calculates the congestion probability in the next two round trip delay. We show that in this case the linear estimator trained by a special signal outperforms the nonlinear one. Also, due to the long term dependency in the traffic and the validity of the Poisson model for a very short interval, the congestion probability formula is approximated with a neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信