提交MADAR共享任务:阿拉伯语细粒度方言识别

Younes Samih, Hamdy Mubarak, Ahmed Abdelali, Mohammed Attia, Mohamed I. Eldesouki, Kareem Darwish
{"title":"提交MADAR共享任务:阿拉伯语细粒度方言识别","authors":"Younes Samih, Hamdy Mubarak, Ahmed Abdelali, Mohammed Attia, Mohamed I. Eldesouki, Kareem Darwish","doi":"10.18653/v1/W19-4639","DOIUrl":null,"url":null,"abstract":"This paper describes the QC-GO team submission to the MADAR Shared Task Subtask 1 (travel domain dialect identification) and Subtask 2 (Twitter user location identification). In our participation in both subtasks, we explored a number of approaches and system combinations to obtain the best performance for both tasks. These include deep neural nets and heuristics. Since individual approaches suffer from various shortcomings, the combination of different approaches was able to fill some of these gaps. Our system achieves F1-Scores of 66.1% and 67.0% on the development sets for Subtasks 1 and 2 respectively.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QC-GO Submission for MADAR Shared Task: Arabic Fine-Grained Dialect Identification\",\"authors\":\"Younes Samih, Hamdy Mubarak, Ahmed Abdelali, Mohammed Attia, Mohamed I. Eldesouki, Kareem Darwish\",\"doi\":\"10.18653/v1/W19-4639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the QC-GO team submission to the MADAR Shared Task Subtask 1 (travel domain dialect identification) and Subtask 2 (Twitter user location identification). In our participation in both subtasks, we explored a number of approaches and system combinations to obtain the best performance for both tasks. These include deep neural nets and heuristics. Since individual approaches suffer from various shortcomings, the combination of different approaches was able to fill some of these gaps. Our system achieves F1-Scores of 66.1% and 67.0% on the development sets for Subtasks 1 and 2 respectively.\",\"PeriodicalId\":268163,\"journal\":{\"name\":\"WANLP@ACL 2019\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WANLP@ACL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了QC-GO团队提交给MADAR共享任务子任务1(旅行域方言识别)和子任务2 (Twitter用户位置识别)。在参与这两个子任务时,我们探索了许多方法和系统组合,以获得两个任务的最佳性能。这些包括深度神经网络和启发式。由于个别方法有各种缺点,不同方法的组合能够填补其中的一些空白。我们的系统在子任务1和子任务2的开发集上分别达到了66.1%和67.0%的f1得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QC-GO Submission for MADAR Shared Task: Arabic Fine-Grained Dialect Identification
This paper describes the QC-GO team submission to the MADAR Shared Task Subtask 1 (travel domain dialect identification) and Subtask 2 (Twitter user location identification). In our participation in both subtasks, we explored a number of approaches and system combinations to obtain the best performance for both tasks. These include deep neural nets and heuristics. Since individual approaches suffer from various shortcomings, the combination of different approaches was able to fill some of these gaps. Our system achieves F1-Scores of 66.1% and 67.0% on the development sets for Subtasks 1 and 2 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信