具有能量收集能力的传感器网络中的自同步占空循环:静态网络情况

H. Hernández, C. Blum
{"title":"具有能量收集能力的传感器网络中的自同步占空循环:静态网络情况","authors":"H. Hernández, C. Blum","doi":"10.1145/1569901.1569907","DOIUrl":null,"url":null,"abstract":"Biological studies have shown that some species of ants rest quite large fractions of their time. Interestingly, not only single ants show this behaviour, but whole ant colonies exhibit synchronized activity phases resulting from self-organization. Inspired by this behaviour, we previously introduced an adaptive and self-synchronized duty-cycling mechanism for mobile sensor networks with energy harvesting capabilities. In this paper, we focus on the study of this mechanism in the context of static sensor networks, because most sensor networks deployed in practice are static. We consider various scenarios that result from the combination of different network topologies and sizes. Our results show that our mechanism also works in the case of static sensor networks with energy harvesting capabilities.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-synchronized duty-cycling in sensor networks with energy harvesting capabilities: the static network case\",\"authors\":\"H. Hernández, C. Blum\",\"doi\":\"10.1145/1569901.1569907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological studies have shown that some species of ants rest quite large fractions of their time. Interestingly, not only single ants show this behaviour, but whole ant colonies exhibit synchronized activity phases resulting from self-organization. Inspired by this behaviour, we previously introduced an adaptive and self-synchronized duty-cycling mechanism for mobile sensor networks with energy harvesting capabilities. In this paper, we focus on the study of this mechanism in the context of static sensor networks, because most sensor networks deployed in practice are static. We consider various scenarios that result from the combination of different network topologies and sizes. Our results show that our mechanism also works in the case of static sensor networks with energy harvesting capabilities.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物学研究表明,某些种类的蚂蚁大部分时间都在休息。有趣的是,不仅单个蚂蚁表现出这种行为,整个蚁群也表现出自组织导致的同步活动阶段。受这种行为的启发,我们之前为具有能量收集能力的移动传感器网络引入了一种自适应和自同步的占空循环机制。在本文中,我们主要在静态传感器网络的背景下研究这种机制,因为在实践中部署的大多数传感器网络都是静态的。我们考虑了由不同网络拓扑结构和大小组合而成的各种场景。我们的研究结果表明,我们的机制也适用于具有能量收集能力的静态传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-synchronized duty-cycling in sensor networks with energy harvesting capabilities: the static network case
Biological studies have shown that some species of ants rest quite large fractions of their time. Interestingly, not only single ants show this behaviour, but whole ant colonies exhibit synchronized activity phases resulting from self-organization. Inspired by this behaviour, we previously introduced an adaptive and self-synchronized duty-cycling mechanism for mobile sensor networks with energy harvesting capabilities. In this paper, we focus on the study of this mechanism in the context of static sensor networks, because most sensor networks deployed in practice are static. We consider various scenarios that result from the combination of different network topologies and sizes. Our results show that our mechanism also works in the case of static sensor networks with energy harvesting capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信