{"title":"来自黄蜂毒液的14个残基肽mastoparan和12个残基类似物MP3的离子通道性质。","authors":"I R Mellor, M S Sansom","doi":"10.1098/rspb.1990.0022","DOIUrl":null,"url":null,"abstract":"<p><p>Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.</p>","PeriodicalId":54561,"journal":{"name":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","volume":"239 1296","pages":"383-400"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1098/rspb.1990.0022","citationCount":"36","resultStr":"{\"title\":\"Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue.\",\"authors\":\"I R Mellor, M S Sansom\",\"doi\":\"10.1098/rspb.1990.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.</p>\",\"PeriodicalId\":54561,\"journal\":{\"name\":\"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character\",\"volume\":\"239 1296\",\"pages\":\"383-400\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1098/rspb.1990.0022\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.1990.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.1990.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue.
Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.