基于非顺序关键帧传播的运动员姿态估计

Mykyta Fastovets, Jean-Yves Guillemaut, A. Hilton
{"title":"基于非顺序关键帧传播的运动员姿态估计","authors":"Mykyta Fastovets, Jean-Yves Guillemaut, A. Hilton","doi":"10.1145/2668904.2668938","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of estimating human pose in challenging monocular sports videos, where manual intervention is often required in order to obtain useful results. Fully automatic approaches focus on developing inference algorithms and probabilistic prior models based on learned measurements and often face challenges in generalisation beyond the learned dataset. This work expands on the idea of using an interactive model-based generative technique for accurately estimating the human pose from uncalibrated unconstrained monocular TV sports footage. A method of keyframe propagation is introduced to obtain reliable tracking from limited operator input by introducing the concepts of keyframe propagation and optimal keyframe selection assistance for the operator. Experimental results show that the approach produces results competitive with those produced with twice the number of manually annotated keyframes, halving the amount of interaction required.","PeriodicalId":401915,"journal":{"name":"Proceedings of the 11th European Conference on Visual Media Production","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Athlete pose estimation by non-sequential key-frame propagation\",\"authors\":\"Mykyta Fastovets, Jean-Yves Guillemaut, A. Hilton\",\"doi\":\"10.1145/2668904.2668938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of estimating human pose in challenging monocular sports videos, where manual intervention is often required in order to obtain useful results. Fully automatic approaches focus on developing inference algorithms and probabilistic prior models based on learned measurements and often face challenges in generalisation beyond the learned dataset. This work expands on the idea of using an interactive model-based generative technique for accurately estimating the human pose from uncalibrated unconstrained monocular TV sports footage. A method of keyframe propagation is introduced to obtain reliable tracking from limited operator input by introducing the concepts of keyframe propagation and optimal keyframe selection assistance for the operator. Experimental results show that the approach produces results competitive with those produced with twice the number of manually annotated keyframes, halving the amount of interaction required.\",\"PeriodicalId\":401915,\"journal\":{\"name\":\"Proceedings of the 11th European Conference on Visual Media Production\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th European Conference on Visual Media Production\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668904.2668938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th European Conference on Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668904.2668938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了具有挑战性的单目运动视频中人体姿态的估计问题,其中通常需要人工干预才能获得有用的结果。全自动方法侧重于开发基于学习测量的推理算法和概率先验模型,并且经常面临超越学习数据集的泛化挑战。这项工作扩展了使用基于交互式模型的生成技术的想法,用于从未校准的无约束单目电视体育镜头中准确估计人体姿势。通过引入关键帧传播和最优关键帧选择辅助的概念,提出了一种关键帧传播方法,在有限的算子输入条件下获得可靠的跟踪。实验结果表明,该方法产生的结果与手动注释关键帧数量的两倍产生的结果具有竞争力,所需交互量减半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Athlete pose estimation by non-sequential key-frame propagation
This paper considers the problem of estimating human pose in challenging monocular sports videos, where manual intervention is often required in order to obtain useful results. Fully automatic approaches focus on developing inference algorithms and probabilistic prior models based on learned measurements and often face challenges in generalisation beyond the learned dataset. This work expands on the idea of using an interactive model-based generative technique for accurately estimating the human pose from uncalibrated unconstrained monocular TV sports footage. A method of keyframe propagation is introduced to obtain reliable tracking from limited operator input by introducing the concepts of keyframe propagation and optimal keyframe selection assistance for the operator. Experimental results show that the approach produces results competitive with those produced with twice the number of manually annotated keyframes, halving the amount of interaction required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信