高面密度热点磁记录的多维信号处理

H. Saito
{"title":"高面密度热点磁记录的多维信号处理","authors":"H. Saito","doi":"10.1109/TMRC56419.2022.9918569","DOIUrl":null,"url":null,"abstract":"A new signal processing scheme for the heated-dot magnetic recording (HDMR) system with double-layered bit-patterned media (BPM) is proposed in this research. This proposed signal processing scheme is applicable to multi-track recording system and uses two cascaded one-dimensional (1D) log-likelihood ratio (LLR) detectors. The proposed scheme is capable of detecting data sequences recorded on two tracks simultaneously and detects the data sequence recorded on each layer in order. The effective transmission rate of the HDMR system with two-track simultaneous detection and double-layered BPM can be increased four times that of the HDMR system with single-layered BPM. It is shown that the error rate performance of the HDMR system with 1D LLR two-track simultaneous detection and double-layered BPM shows a significant improvement over the HDMR system with the conventional 1D LLR detection and single-layered BPM by computer simulation.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multidimensional Signal Processing for High Areal Density Heated-Dot Magnetic Recording\",\"authors\":\"H. Saito\",\"doi\":\"10.1109/TMRC56419.2022.9918569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new signal processing scheme for the heated-dot magnetic recording (HDMR) system with double-layered bit-patterned media (BPM) is proposed in this research. This proposed signal processing scheme is applicable to multi-track recording system and uses two cascaded one-dimensional (1D) log-likelihood ratio (LLR) detectors. The proposed scheme is capable of detecting data sequences recorded on two tracks simultaneously and detects the data sequence recorded on each layer in order. The effective transmission rate of the HDMR system with two-track simultaneous detection and double-layered BPM can be increased four times that of the HDMR system with single-layered BPM. It is shown that the error rate performance of the HDMR system with 1D LLR two-track simultaneous detection and double-layered BPM shows a significant improvement over the HDMR system with the conventional 1D LLR detection and single-layered BPM by computer simulation.\",\"PeriodicalId\":432413,\"journal\":{\"name\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC56419.2022.9918569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种适用于双层位模式介质(BPM)的热点磁记录(HDMR)系统的信号处理方案。该信号处理方案适用于多轨录音系统,采用两个级联一维对数似然比检测器。该方案能够同时检测记录在两个磁道上的数据序列,并按顺序检测每一层记录的数据序列。采用双道同步检测和双层BPM的HDMR系统的有效传输速率比单层BPM的HDMR系统提高了4倍。计算机仿真结果表明,采用一维LLR双轨同步检测和双层BPM的HDMR系统的误码率性能明显优于传统的一维LLR检测和单层BPM的HDMR系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional Signal Processing for High Areal Density Heated-Dot Magnetic Recording
A new signal processing scheme for the heated-dot magnetic recording (HDMR) system with double-layered bit-patterned media (BPM) is proposed in this research. This proposed signal processing scheme is applicable to multi-track recording system and uses two cascaded one-dimensional (1D) log-likelihood ratio (LLR) detectors. The proposed scheme is capable of detecting data sequences recorded on two tracks simultaneously and detects the data sequence recorded on each layer in order. The effective transmission rate of the HDMR system with two-track simultaneous detection and double-layered BPM can be increased four times that of the HDMR system with single-layered BPM. It is shown that the error rate performance of the HDMR system with 1D LLR two-track simultaneous detection and double-layered BPM shows a significant improvement over the HDMR system with the conventional 1D LLR detection and single-layered BPM by computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信