{"title":"关于约束神经元的行为","authors":"Richard Borowski, Arthur Choi","doi":"10.32473/flairs.36.133336","DOIUrl":null,"url":null,"abstract":"A neuron with binary inputs and a binary output represents a Boolean function. Our goal is to extract this Boolean function into a tractable representation that will facilitate the explanation and formal verification of a neuron's behavior. Unfortunately, extracting a neuron's Boolean function is in general an NP-hard problem. However, it was recently shown that prime implicants of this Boolean function can be enumerated efficiently, with only polynomial time delay. Building on this result, we propose a best-first search algorithm that is able to incrementally tighten inner and outer bounds of a neuron's Boolean function. These bounds correspond to truncated prime-implicant covers of the Boolean function. We provide two case studies that highlight our ability to bound the behavior of a neuron.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bounding the Behavior of a Neuron\",\"authors\":\"Richard Borowski, Arthur Choi\",\"doi\":\"10.32473/flairs.36.133336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neuron with binary inputs and a binary output represents a Boolean function. Our goal is to extract this Boolean function into a tractable representation that will facilitate the explanation and formal verification of a neuron's behavior. Unfortunately, extracting a neuron's Boolean function is in general an NP-hard problem. However, it was recently shown that prime implicants of this Boolean function can be enumerated efficiently, with only polynomial time delay. Building on this result, we propose a best-first search algorithm that is able to incrementally tighten inner and outer bounds of a neuron's Boolean function. These bounds correspond to truncated prime-implicant covers of the Boolean function. We provide two case studies that highlight our ability to bound the behavior of a neuron.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neuron with binary inputs and a binary output represents a Boolean function. Our goal is to extract this Boolean function into a tractable representation that will facilitate the explanation and formal verification of a neuron's behavior. Unfortunately, extracting a neuron's Boolean function is in general an NP-hard problem. However, it was recently shown that prime implicants of this Boolean function can be enumerated efficiently, with only polynomial time delay. Building on this result, we propose a best-first search algorithm that is able to incrementally tighten inner and outer bounds of a neuron's Boolean function. These bounds correspond to truncated prime-implicant covers of the Boolean function. We provide two case studies that highlight our ability to bound the behavior of a neuron.