人体运动识别的生成模型

David Excell, A. Taylan Cemgil, William J. Fitzgerald
{"title":"人体运动识别的生成模型","authors":"David Excell, A. Taylan Cemgil, William J. Fitzgerald","doi":"10.1109/ISPA.2007.4383731","DOIUrl":null,"url":null,"abstract":"This paper describes a generative Bayesian model designed to track an articulated 3D human skeleton in an image sequence. The model infers the subjects appearance, pose, and movement. This technique provides a novel method for implicity modelling depth and self occlusion, two issues that have been identified as drawbacks of existing models. We also employ a switching linear dynamical system to efficiently propose skeleton configurations. The model is verified using synthetic data. A video clip from the Caviar data set is used to demonstrate the potential of the methodology for tracking on real data.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generative Model for Human Motion Recognition\",\"authors\":\"David Excell, A. Taylan Cemgil, William J. Fitzgerald\",\"doi\":\"10.1109/ISPA.2007.4383731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a generative Bayesian model designed to track an articulated 3D human skeleton in an image sequence. The model infers the subjects appearance, pose, and movement. This technique provides a novel method for implicity modelling depth and self occlusion, two issues that have been identified as drawbacks of existing models. We also employ a switching linear dynamical system to efficiently propose skeleton configurations. The model is verified using synthetic data. A video clip from the Caviar data set is used to demonstrate the potential of the methodology for tracking on real data.\",\"PeriodicalId\":112420,\"journal\":{\"name\":\"2007 5th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 5th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2007.4383731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种生成贝叶斯模型,用于在图像序列中跟踪关节三维人体骨骼。模型推断出对象的外观、姿势和动作。该技术为隐式深度和自遮挡建模提供了一种新的方法,这两个问题已经被认为是现有模型的缺点。我们还采用切换线性动力系统来有效地提出骨架结构。利用综合数据对模型进行了验证。鱼子酱数据集的一个视频剪辑被用来演示跟踪真实数据的方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Model for Human Motion Recognition
This paper describes a generative Bayesian model designed to track an articulated 3D human skeleton in an image sequence. The model infers the subjects appearance, pose, and movement. This technique provides a novel method for implicity modelling depth and self occlusion, two issues that have been identified as drawbacks of existing models. We also employ a switching linear dynamical system to efficiently propose skeleton configurations. The model is verified using synthetic data. A video clip from the Caviar data set is used to demonstrate the potential of the methodology for tracking on real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信