{"title":"为您的矩阵提供良好的类型:类型矩阵和应用程序的Haskell库(功能珍珠)","authors":"Armando Santos, J. Oliveira","doi":"10.1145/3406088.3409019","DOIUrl":null,"url":null,"abstract":"We study a simple inductive data type for representing correct-by-construction matrices. Despite its simplicity, it can be used to implement matrix-manipulation algorithms efficiently and safely, performing in some cases faster than existing alternatives even though the algorithms are written in a direct and purely functional style. A rich collection of laws makes it possible to derive and optimise these algorithms using equational reasoning, avoiding the notorious off-by-one indexing errors when fiddling with matrix dimensions. We demonstrate the usefulness of the data type on several examples, and highlight connections to related topics in category theory.","PeriodicalId":242706,"journal":{"name":"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Type your matrices for great good: a Haskell library of typed matrices and applications (functional pearl)\",\"authors\":\"Armando Santos, J. Oliveira\",\"doi\":\"10.1145/3406088.3409019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a simple inductive data type for representing correct-by-construction matrices. Despite its simplicity, it can be used to implement matrix-manipulation algorithms efficiently and safely, performing in some cases faster than existing alternatives even though the algorithms are written in a direct and purely functional style. A rich collection of laws makes it possible to derive and optimise these algorithms using equational reasoning, avoiding the notorious off-by-one indexing errors when fiddling with matrix dimensions. We demonstrate the usefulness of the data type on several examples, and highlight connections to related topics in category theory.\",\"PeriodicalId\":242706,\"journal\":{\"name\":\"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406088.3409019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406088.3409019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Type your matrices for great good: a Haskell library of typed matrices and applications (functional pearl)
We study a simple inductive data type for representing correct-by-construction matrices. Despite its simplicity, it can be used to implement matrix-manipulation algorithms efficiently and safely, performing in some cases faster than existing alternatives even though the algorithms are written in a direct and purely functional style. A rich collection of laws makes it possible to derive and optimise these algorithms using equational reasoning, avoiding the notorious off-by-one indexing errors when fiddling with matrix dimensions. We demonstrate the usefulness of the data type on several examples, and highlight connections to related topics in category theory.