{"title":"基于低秩随机流形优化的非负矩阵分解","authors":"Ahmed Douik, B. Hassibi","doi":"10.1109/ITA50056.2020.9244937","DOIUrl":null,"url":null,"abstract":"Several real-world applications, notably in non-negative matrix factorization, graph-based clustering, and machine learning, require solving a convex optimization problem over the set of stochastic and doubly stochastic matrices. A common feature of these problems is that the optimal solution is generally a low-rank matrix. This paper suggests reformulating the problem by taking advantage of the low-rank factorization X = UVT and develops a Riemannian optimization framework for solving optimization problems on the set of low-rank stochastic and doubly stochastic matrices. In particular, this paper introduces and studies the geometry of the low-rank stochastic multinomial and the doubly stochastic manifold in order to derive first-order optimization algorithms. Being carefully designed and of lower dimension than the original problem, the proposed Riemannian optimization framework presents a clear complexity advantage. The claim is attested through numerical experiments on real-world and synthetic data for Non-negative Matrix Factorization (NFM) applications. The proposed algorithm is shown to outperform, in terms of running time, state-of-the-art methods for NFM.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Negative Matrix Factorization via Low-Rank Stochastic Manifold Optimization\",\"authors\":\"Ahmed Douik, B. Hassibi\",\"doi\":\"10.1109/ITA50056.2020.9244937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several real-world applications, notably in non-negative matrix factorization, graph-based clustering, and machine learning, require solving a convex optimization problem over the set of stochastic and doubly stochastic matrices. A common feature of these problems is that the optimal solution is generally a low-rank matrix. This paper suggests reformulating the problem by taking advantage of the low-rank factorization X = UVT and develops a Riemannian optimization framework for solving optimization problems on the set of low-rank stochastic and doubly stochastic matrices. In particular, this paper introduces and studies the geometry of the low-rank stochastic multinomial and the doubly stochastic manifold in order to derive first-order optimization algorithms. Being carefully designed and of lower dimension than the original problem, the proposed Riemannian optimization framework presents a clear complexity advantage. The claim is attested through numerical experiments on real-world and synthetic data for Non-negative Matrix Factorization (NFM) applications. The proposed algorithm is shown to outperform, in terms of running time, state-of-the-art methods for NFM.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Negative Matrix Factorization via Low-Rank Stochastic Manifold Optimization
Several real-world applications, notably in non-negative matrix factorization, graph-based clustering, and machine learning, require solving a convex optimization problem over the set of stochastic and doubly stochastic matrices. A common feature of these problems is that the optimal solution is generally a low-rank matrix. This paper suggests reformulating the problem by taking advantage of the low-rank factorization X = UVT and develops a Riemannian optimization framework for solving optimization problems on the set of low-rank stochastic and doubly stochastic matrices. In particular, this paper introduces and studies the geometry of the low-rank stochastic multinomial and the doubly stochastic manifold in order to derive first-order optimization algorithms. Being carefully designed and of lower dimension than the original problem, the proposed Riemannian optimization framework presents a clear complexity advantage. The claim is attested through numerical experiments on real-world and synthetic data for Non-negative Matrix Factorization (NFM) applications. The proposed algorithm is shown to outperform, in terms of running time, state-of-the-art methods for NFM.