利用介质交互蜜罐分析物联网僵尸网络之间的变异

Bryson Lingenfelter, Iman Vakilinia, S. Sengupta
{"title":"利用介质交互蜜罐分析物联网僵尸网络之间的变异","authors":"Bryson Lingenfelter, Iman Vakilinia, S. Sengupta","doi":"10.1109/CCWC47524.2020.9031234","DOIUrl":null,"url":null,"abstract":"Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.","PeriodicalId":161209,"journal":{"name":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots\",\"authors\":\"Bryson Lingenfelter, Iman Vakilinia, S. Sengupta\",\"doi\":\"10.1109/CCWC47524.2020.9031234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.\",\"PeriodicalId\":161209,\"journal\":{\"name\":\"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCWC47524.2020.9031234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCWC47524.2020.9031234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通过分析在三个corie SSH/Telnet蜜罐上创建和下载文件的会话,我们发现物联网僵尸网络是迄今为止连接系统中最常见的恶意软件来源。我们详细介绍了蜜罐配置,并描述了一种使用编辑距离列出几乎相同的恶意登录会话的简单方法。大量的物联网僵尸网络攻击我们的蜜罐,但是将僵尸网络软件下载到蜜罐的恶意会话几乎都与两种常见的攻击模式之一几乎相同。很明显,Mirai蠕虫仍然是占主导地位的僵尸网络软件,但已经被其他黑客扩展和修改。我们还发现,相同的加载器设备在40天的时间内向蜜罐部署了几种不同的僵尸网络恶意软件,这表明来自同一来源的多个僵尸网络部署。我们的结论是,Mirai继续适应,但可以有效地跟踪使用中等相互作用蜜罐,如Cowrie。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots
Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信