辛表的循环筛分现象

Graeme Henrickson, Anna Stokke, Max Wiebe
{"title":"辛表的循环筛分现象","authors":"Graeme Henrickson, Anna Stokke, Max Wiebe","doi":"10.54550/eca2024v4s1r8","DOIUrl":null,"url":null,"abstract":"We give a cyclic sieving phenomenon for symplectic $\\lambda$-tableaux, $SP(\\lambda, 2m)$, where $\\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A cyclic sieving phenomenon for symplectic tableaux\",\"authors\":\"Graeme Henrickson, Anna Stokke, Max Wiebe\",\"doi\":\"10.54550/eca2024v4s1r8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a cyclic sieving phenomenon for symplectic $\\\\lambda$-tableaux, $SP(\\\\lambda, 2m)$, where $\\\\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\\\\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.\",\"PeriodicalId\":340033,\"journal\":{\"name\":\"Enumerative Combinatorics and Applications\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enumerative Combinatorics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54550/eca2024v4s1r8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/eca2024v4s1r8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了一个循环筛分现象对于辛$\lambda$ -tableaux, $SP(\lambda, 2m)$,其中$\lambda$是一个奇数正整数$n$的分区,$gcd(m,p)=1$对于任何奇数素数$p\leq n$。我们利用柏原-中岛辛表上的晶体结构作为Weyl群中简单反射的产物得到循环筛分作用。循环筛分多项式的$q$ -类似于辛表的钩含量公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cyclic sieving phenomenon for symplectic tableaux
We give a cyclic sieving phenomenon for symplectic $\lambda$-tableaux, $SP(\lambda, 2m)$, where $\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信