{"title":"辛表的循环筛分现象","authors":"Graeme Henrickson, Anna Stokke, Max Wiebe","doi":"10.54550/eca2024v4s1r8","DOIUrl":null,"url":null,"abstract":"We give a cyclic sieving phenomenon for symplectic $\\lambda$-tableaux, $SP(\\lambda, 2m)$, where $\\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A cyclic sieving phenomenon for symplectic tableaux\",\"authors\":\"Graeme Henrickson, Anna Stokke, Max Wiebe\",\"doi\":\"10.54550/eca2024v4s1r8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a cyclic sieving phenomenon for symplectic $\\\\lambda$-tableaux, $SP(\\\\lambda, 2m)$, where $\\\\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\\\\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.\",\"PeriodicalId\":340033,\"journal\":{\"name\":\"Enumerative Combinatorics and Applications\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enumerative Combinatorics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54550/eca2024v4s1r8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/eca2024v4s1r8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cyclic sieving phenomenon for symplectic tableaux
We give a cyclic sieving phenomenon for symplectic $\lambda$-tableaux, $SP(\lambda, 2m)$, where $\lambda$ is a partition of an odd positive integer $n$ and $gcd(m,p)=1$ for any odd prime $p\leq n$. We use the crystal structure on Kashiwara-Nakashima symplectic tableaux to get a cyclic sieving action as the product of simple reflections in the Weyl group. The cyclic sieving polynomial is the $q$-anologue of the hook-content formula for symplectic tableaux.