三维人体跟踪的自适应自回归对数搜索

Peiyao Li, A. Bouzerdoum, S. L. Phung
{"title":"三维人体跟踪的自适应自回归对数搜索","authors":"Peiyao Li, A. Bouzerdoum, S. L. Phung","doi":"10.1109/AVSS.2012.7","DOIUrl":null,"url":null,"abstract":"Human tracking is an important vision task in video surveillance and perceptual human-computer interfaces. This paper presents a novel algorithm for region-based human tracking using color and depth features. We propose an adaptive autoregressive logarithmic search (ARLS) to estimate the target position, and use depth information to further reduce the false alarm rate. The new ARLS algorithm is evaluated on a color and depth (RGBD) video dataset acquired with the Kinect sensor. The dataset contains various real-world scenarios with illumination and speed variations, and partial occlusion. The experimental results show that the ARLS algorithm is able to handle difficult tracking scenarios, it achieves a tracking accuracy of 91.26% on the test dataset. The proposed algorithm is compared with two tracking algorithms, namely the particle filtering and a modified logarithmic search algorithm.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Autoregressive Logarithmic Search for 3D Human Tracking\",\"authors\":\"Peiyao Li, A. Bouzerdoum, S. L. Phung\",\"doi\":\"10.1109/AVSS.2012.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human tracking is an important vision task in video surveillance and perceptual human-computer interfaces. This paper presents a novel algorithm for region-based human tracking using color and depth features. We propose an adaptive autoregressive logarithmic search (ARLS) to estimate the target position, and use depth information to further reduce the false alarm rate. The new ARLS algorithm is evaluated on a color and depth (RGBD) video dataset acquired with the Kinect sensor. The dataset contains various real-world scenarios with illumination and speed variations, and partial occlusion. The experimental results show that the ARLS algorithm is able to handle difficult tracking scenarios, it achieves a tracking accuracy of 91.26% on the test dataset. The proposed algorithm is compared with two tracking algorithms, namely the particle filtering and a modified logarithmic search algorithm.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人体跟踪是视频监控和感知人机界面中的一项重要视觉任务。提出了一种利用颜色和深度特征的基于区域的人体跟踪算法。我们提出了一种自适应自回归对数搜索(ARLS)来估计目标位置,并利用深度信息进一步降低虚警率。新的ARLS算法在Kinect传感器获取的颜色和深度(RGBD)视频数据集上进行评估。该数据集包含了光照和速度变化以及部分遮挡的各种现实场景。实验结果表明,ARLS算法能够处理困难的跟踪场景,在测试数据集上达到了91.26%的跟踪精度。将该算法与粒子滤波和改进的对数搜索两种跟踪算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Autoregressive Logarithmic Search for 3D Human Tracking
Human tracking is an important vision task in video surveillance and perceptual human-computer interfaces. This paper presents a novel algorithm for region-based human tracking using color and depth features. We propose an adaptive autoregressive logarithmic search (ARLS) to estimate the target position, and use depth information to further reduce the false alarm rate. The new ARLS algorithm is evaluated on a color and depth (RGBD) video dataset acquired with the Kinect sensor. The dataset contains various real-world scenarios with illumination and speed variations, and partial occlusion. The experimental results show that the ARLS algorithm is able to handle difficult tracking scenarios, it achieves a tracking accuracy of 91.26% on the test dataset. The proposed algorithm is compared with two tracking algorithms, namely the particle filtering and a modified logarithmic search algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信