用无人机评价榛子集约化果园几何特征

Alessandra Vinci, Chiara Traini, D. Farinelli, Raffaella Brigante
{"title":"用无人机评价榛子集约化果园几何特征","authors":"Alessandra Vinci, Chiara Traini, D. Farinelli, Raffaella Brigante","doi":"10.1109/MetroAgriFor55389.2022.9964832","DOIUrl":null,"url":null,"abstract":"Assessing the canopy characteristics of the trees is essential for optimizing agronomic management. In fact, it has been shown that there is a strong relationship between the geometric characteristics (i.e. size and volume) of the tree and quantity of water and fertilizer used for crop management. Normally, tree measurements are carried out using manual method, that is time consuming so seems to be more feasible on few trees. For the first time, this study tested the UAV technology on intensive and high-density hazelnut orchards. The aim was to propose a new automated method for the hazelnut canopy characterization, using a DJI Phantom 4 Multispectral UAV. The results showed a good performance of the method proposed for evaluating the width and the actual volume of the canopy. A criticism was revealed for the height of the canopy probably due to the UAV survey. Anyway, the measurements conducted on the point cloud resulted less time-consuming per each tree and more punctual than manual ones, so less exposed to errors.","PeriodicalId":374452,"journal":{"name":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the geometrical characteristics of hazelnut intensive orchard by an Unmanned Aerial Vehicle (UAV)\",\"authors\":\"Alessandra Vinci, Chiara Traini, D. Farinelli, Raffaella Brigante\",\"doi\":\"10.1109/MetroAgriFor55389.2022.9964832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the canopy characteristics of the trees is essential for optimizing agronomic management. In fact, it has been shown that there is a strong relationship between the geometric characteristics (i.e. size and volume) of the tree and quantity of water and fertilizer used for crop management. Normally, tree measurements are carried out using manual method, that is time consuming so seems to be more feasible on few trees. For the first time, this study tested the UAV technology on intensive and high-density hazelnut orchards. The aim was to propose a new automated method for the hazelnut canopy characterization, using a DJI Phantom 4 Multispectral UAV. The results showed a good performance of the method proposed for evaluating the width and the actual volume of the canopy. A criticism was revealed for the height of the canopy probably due to the UAV survey. Anyway, the measurements conducted on the point cloud resulted less time-consuming per each tree and more punctual than manual ones, so less exposed to errors.\",\"PeriodicalId\":374452,\"journal\":{\"name\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAgriFor55389.2022.9964832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor55389.2022.9964832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估树木的冠层特征对优化农艺管理至关重要。事实上,研究表明,树木的几何特征(即大小和体积)与作物管理中使用的水和肥料的数量之间存在很强的关系。通常情况下,树木测量是使用人工方法进行的,这是耗时的,所以似乎在少数树木上更可行。本研究首次在集约高密度榛子园对无人机技术进行了试验。目的是利用大疆幻影4多光谱无人机,提出一种新的榛子树冠表征自动化方法。结果表明,所提出的冠层宽度和实际体积的计算方法具有较好的效果。可能由于无人机调查,对冠层的高度提出了批评。无论如何,在点云上进行的测量比人工测量更节省时间,更准时,因此更少出现错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the geometrical characteristics of hazelnut intensive orchard by an Unmanned Aerial Vehicle (UAV)
Assessing the canopy characteristics of the trees is essential for optimizing agronomic management. In fact, it has been shown that there is a strong relationship between the geometric characteristics (i.e. size and volume) of the tree and quantity of water and fertilizer used for crop management. Normally, tree measurements are carried out using manual method, that is time consuming so seems to be more feasible on few trees. For the first time, this study tested the UAV technology on intensive and high-density hazelnut orchards. The aim was to propose a new automated method for the hazelnut canopy characterization, using a DJI Phantom 4 Multispectral UAV. The results showed a good performance of the method proposed for evaluating the width and the actual volume of the canopy. A criticism was revealed for the height of the canopy probably due to the UAV survey. Anyway, the measurements conducted on the point cloud resulted less time-consuming per each tree and more punctual than manual ones, so less exposed to errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信