基于神经网络的机械系统振动主动控制直接逆控制

G. Abreu, R. L. Teixeira, J. F. Ribeiro
{"title":"基于神经网络的机械系统振动主动控制直接逆控制","authors":"G. Abreu, R. L. Teixeira, J. F. Ribeiro","doi":"10.1109/SBRN.2000.889722","DOIUrl":null,"url":null,"abstract":"This paper describes the use of artificial neural networks for the control of vibrations of a mechanical system using its experimental direct inverse model. The neural controller is trained to model the experimental inverse model of the plant using the backpropagation algorithm with simulated annealing. The inverse model of the plant is obtained by the training mechanism that uses experimental input and output data. After the training, the neural network is used as a forward controller. The efficiency and the robustness of the controller are shown through experimental tests. The neural control algorithm is implemented in a computer and the performance of controller is evaluated under a set of experimental tests made to the active control of vibrations of a mechanical system of one degree of freedom actuated by magnetic actuators.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A neural network-based direct inverse control for active control of vibrations of mechanical systems\",\"authors\":\"G. Abreu, R. L. Teixeira, J. F. Ribeiro\",\"doi\":\"10.1109/SBRN.2000.889722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of artificial neural networks for the control of vibrations of a mechanical system using its experimental direct inverse model. The neural controller is trained to model the experimental inverse model of the plant using the backpropagation algorithm with simulated annealing. The inverse model of the plant is obtained by the training mechanism that uses experimental input and output data. After the training, the neural network is used as a forward controller. The efficiency and the robustness of the controller are shown through experimental tests. The neural control algorithm is implemented in a computer and the performance of controller is evaluated under a set of experimental tests made to the active control of vibrations of a mechanical system of one degree of freedom actuated by magnetic actuators.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文描述了利用人工神经网络的实验直接逆模型来控制机械系统的振动。利用模拟退火的反向传播算法,训练神经控制器对植物的实验逆模型进行建模。利用实验输入输出数据,通过训练机制得到被控对象的逆模型。训练完成后,利用神经网络作为正向控制器。通过实验验证了该控制器的有效性和鲁棒性。在计算机上实现了神经控制算法,并对磁致动器驱动的一自由度机械系统的振动主动控制进行了一组实验测试,对控制器的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network-based direct inverse control for active control of vibrations of mechanical systems
This paper describes the use of artificial neural networks for the control of vibrations of a mechanical system using its experimental direct inverse model. The neural controller is trained to model the experimental inverse model of the plant using the backpropagation algorithm with simulated annealing. The inverse model of the plant is obtained by the training mechanism that uses experimental input and output data. After the training, the neural network is used as a forward controller. The efficiency and the robustness of the controller are shown through experimental tests. The neural control algorithm is implemented in a computer and the performance of controller is evaluated under a set of experimental tests made to the active control of vibrations of a mechanical system of one degree of freedom actuated by magnetic actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信