基于深度神经网络瓶颈特征的远距离大词汇语音识别学习特征映射

Ivan Himawan, P. Motlícek, David Imseng, B. Potard, Namhoon Kim, Jaewon Lee
{"title":"基于深度神经网络瓶颈特征的远距离大词汇语音识别学习特征映射","authors":"Ivan Himawan, P. Motlícek, David Imseng, B. Potard, Namhoon Kim, Jaewon Lee","doi":"10.1109/ICASSP.2015.7178830","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition from distant microphones is a difficult task because recordings are affected by reverberation and background noise. First, the application of the deep neural network (DNN)/hidden Markov model (HMM) hybrid acoustic models for distant speech recognition task using AMI meeting corpus is investigated. This paper then proposes a feature transformation for removing reverberation and background noise artefacts from bottleneck features using DNN trained to learn the mapping between distant-talking speech features and close-talking speech bottleneck features. Experimental results on AMI meeting corpus reveal that the mismatch between close-talking and distant-talking conditions is largely reduced, with about 16% relative improvement over conventional bottleneck system (trained on close-talking speech). If the feature mapping is applied to close-talking speech, a minor degradation of 4% relative is observed.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Learning feature mapping using deep neural network bottleneck features for distant large vocabulary speech recognition\",\"authors\":\"Ivan Himawan, P. Motlícek, David Imseng, B. Potard, Namhoon Kim, Jaewon Lee\",\"doi\":\"10.1109/ICASSP.2015.7178830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic speech recognition from distant microphones is a difficult task because recordings are affected by reverberation and background noise. First, the application of the deep neural network (DNN)/hidden Markov model (HMM) hybrid acoustic models for distant speech recognition task using AMI meeting corpus is investigated. This paper then proposes a feature transformation for removing reverberation and background noise artefacts from bottleneck features using DNN trained to learn the mapping between distant-talking speech features and close-talking speech bottleneck features. Experimental results on AMI meeting corpus reveal that the mismatch between close-talking and distant-talking conditions is largely reduced, with about 16% relative improvement over conventional bottleneck system (trained on close-talking speech). If the feature mapping is applied to close-talking speech, a minor degradation of 4% relative is observed.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

由于录音受到混响和背景噪声的影响,远距离麦克风的自动语音识别是一项艰巨的任务。首先,研究了深度神经网络(DNN)/隐马尔可夫模型(HMM)混合声学模型在AMI会议语料库远程语音识别任务中的应用。然后,本文提出了一种特征转换方法,利用训练好的深度神经网络学习远距离说话语音特征和近距离说话语音瓶颈特征之间的映射,从瓶颈特征中去除混响和背景噪声伪影。在AMI会议语料库上的实验结果表明,该系统在很大程度上减少了近距离谈话和远距离谈话条件之间的不匹配,比传统的瓶颈系统(近距离谈话语音训练)相对提高了16%左右。如果将特征映射应用于近距离说话的语音,则可以观察到相对4%的轻微退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning feature mapping using deep neural network bottleneck features for distant large vocabulary speech recognition
Automatic speech recognition from distant microphones is a difficult task because recordings are affected by reverberation and background noise. First, the application of the deep neural network (DNN)/hidden Markov model (HMM) hybrid acoustic models for distant speech recognition task using AMI meeting corpus is investigated. This paper then proposes a feature transformation for removing reverberation and background noise artefacts from bottleneck features using DNN trained to learn the mapping between distant-talking speech features and close-talking speech bottleneck features. Experimental results on AMI meeting corpus reveal that the mismatch between close-talking and distant-talking conditions is largely reduced, with about 16% relative improvement over conventional bottleneck system (trained on close-talking speech). If the feature mapping is applied to close-talking speech, a minor degradation of 4% relative is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信