{"title":"通过频率不变性变换和PARAFAC分解的宽带波束形成","authors":"R. K. Miranda, J. Costa, G. D. Galdo, F. Roemer","doi":"10.1109/CAMSAP.2017.8313096","DOIUrl":null,"url":null,"abstract":"For the next generation communications, a high data-rate scenario is expected not only due to the increasing amount of mobile subscribers, but also due to the impact of technologies such as the Internet of Things (IoT), Vehicular Ad Hoc Networks (VANETs) and Virtual Reality (VR). One of the key technologies to allow for a better exploitation of the scarce spectrum is the incorporation of antenna arrays into communication devices. In that sense, beamforming is an array processing tool that provides spatial separation of multiple sources sharing the same spectrum band. In this work, we propose a framework composed of a bank of frequency invariant beamformers (FIB) and an adaptive parallel factor analysis (PARAFAC) decomposition instead of the state-of-the art independent component analysis (ICA). The original PARAFAC adaptation is modified for scenarios where the signals are time-correlated (non-white) and the a pseudo-inversion step is added for an increased accuracy. Our proposed framework outperforms the state-of-the-art methods in terms of accuracy and convergence.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Broadband beamforming via frequency invariance transformation and PARAFAC decomposition\",\"authors\":\"R. K. Miranda, J. Costa, G. D. Galdo, F. Roemer\",\"doi\":\"10.1109/CAMSAP.2017.8313096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the next generation communications, a high data-rate scenario is expected not only due to the increasing amount of mobile subscribers, but also due to the impact of technologies such as the Internet of Things (IoT), Vehicular Ad Hoc Networks (VANETs) and Virtual Reality (VR). One of the key technologies to allow for a better exploitation of the scarce spectrum is the incorporation of antenna arrays into communication devices. In that sense, beamforming is an array processing tool that provides spatial separation of multiple sources sharing the same spectrum band. In this work, we propose a framework composed of a bank of frequency invariant beamformers (FIB) and an adaptive parallel factor analysis (PARAFAC) decomposition instead of the state-of-the art independent component analysis (ICA). The original PARAFAC adaptation is modified for scenarios where the signals are time-correlated (non-white) and the a pseudo-inversion step is added for an increased accuracy. Our proposed framework outperforms the state-of-the-art methods in terms of accuracy and convergence.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Broadband beamforming via frequency invariance transformation and PARAFAC decomposition
For the next generation communications, a high data-rate scenario is expected not only due to the increasing amount of mobile subscribers, but also due to the impact of technologies such as the Internet of Things (IoT), Vehicular Ad Hoc Networks (VANETs) and Virtual Reality (VR). One of the key technologies to allow for a better exploitation of the scarce spectrum is the incorporation of antenna arrays into communication devices. In that sense, beamforming is an array processing tool that provides spatial separation of multiple sources sharing the same spectrum band. In this work, we propose a framework composed of a bank of frequency invariant beamformers (FIB) and an adaptive parallel factor analysis (PARAFAC) decomposition instead of the state-of-the art independent component analysis (ICA). The original PARAFAC adaptation is modified for scenarios where the signals are time-correlated (non-white) and the a pseudo-inversion step is added for an increased accuracy. Our proposed framework outperforms the state-of-the-art methods in terms of accuracy and convergence.