{"title":"产品生产记录系统中的深度学习","authors":"Wenjing Wang, Li Zhao","doi":"10.21307/ijanmc-2021-028","DOIUrl":null,"url":null,"abstract":"Abstract Deep learning based data analysis techniques are investigated in the context of product production record systems, using CNN, STACK LSTM, GRU, INCEPTION, ConvLSTM and CasualLSTM techniques to design network models and to study the processing of temporal data. Three network models are proposed for the problem of predicting the pass rate of upcoming product inspection records, namely CNN-STACK LSTM, INCEPTION-GRU and INCEPTION-Casual LSTM, and the structure of each network model follows the learning of local-global features. The experimental results show that the INCEPTION-GRU network model works best among the three models. Based on the prediction results, it is possible to correct in advance the operation of the shop technicians who do not regulate the debugging of the product, so that the initial production efficiency of the product can be improved.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning in Product Manufacturing Record System\",\"authors\":\"Wenjing Wang, Li Zhao\",\"doi\":\"10.21307/ijanmc-2021-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deep learning based data analysis techniques are investigated in the context of product production record systems, using CNN, STACK LSTM, GRU, INCEPTION, ConvLSTM and CasualLSTM techniques to design network models and to study the processing of temporal data. Three network models are proposed for the problem of predicting the pass rate of upcoming product inspection records, namely CNN-STACK LSTM, INCEPTION-GRU and INCEPTION-Casual LSTM, and the structure of each network model follows the learning of local-global features. The experimental results show that the INCEPTION-GRU network model works best among the three models. Based on the prediction results, it is possible to correct in advance the operation of the shop technicians who do not regulate the debugging of the product, so that the initial production efficiency of the product can be improved.\",\"PeriodicalId\":193299,\"journal\":{\"name\":\"International Journal of Advanced Network, Monitoring and Controls\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Network, Monitoring and Controls\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/ijanmc-2021-028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijanmc-2021-028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning in Product Manufacturing Record System
Abstract Deep learning based data analysis techniques are investigated in the context of product production record systems, using CNN, STACK LSTM, GRU, INCEPTION, ConvLSTM and CasualLSTM techniques to design network models and to study the processing of temporal data. Three network models are proposed for the problem of predicting the pass rate of upcoming product inspection records, namely CNN-STACK LSTM, INCEPTION-GRU and INCEPTION-Casual LSTM, and the structure of each network model follows the learning of local-global features. The experimental results show that the INCEPTION-GRU network model works best among the three models. Based on the prediction results, it is possible to correct in advance the operation of the shop technicians who do not regulate the debugging of the product, so that the initial production efficiency of the product can be improved.