集成算法在电影推荐中的多元数据组合

Bruno Souza Cabral, Renato Dompieri Beltrao, M. Manzato, F. Durão
{"title":"集成算法在电影推荐中的多元数据组合","authors":"Bruno Souza Cabral, Renato Dompieri Beltrao, M. Manzato, F. Durão","doi":"10.1145/2664551.2664569","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the application of ensemble algorithms to improve the ranking recommendation problem with multiple metadata. We propose three generic ensemble strategies that do not require modification of the recommender algorithm. They combine predictions from a recommender trained with distinct metadata into a unified rank of recommended items. The proposed strategies are Most Pleasure, Best of All and Genetic Algorithm Weighting. The evaluation using the HetRec 2011 MovieLens 2k dataset with five different metadata (genres, tags, directors, actors and countries) shows that our proposed ensemble algorithms achieve a considerable 7% improvement in the Mean Average Precision even with state-of-art collaborative filtering algorithms.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combining Multiple Metadata Types in Movies Recommendation Using Ensemble Algorithms\",\"authors\":\"Bruno Souza Cabral, Renato Dompieri Beltrao, M. Manzato, F. Durão\",\"doi\":\"10.1145/2664551.2664569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the application of ensemble algorithms to improve the ranking recommendation problem with multiple metadata. We propose three generic ensemble strategies that do not require modification of the recommender algorithm. They combine predictions from a recommender trained with distinct metadata into a unified rank of recommended items. The proposed strategies are Most Pleasure, Best of All and Genetic Algorithm Weighting. The evaluation using the HetRec 2011 MovieLens 2k dataset with five different metadata (genres, tags, directors, actors and countries) shows that our proposed ensemble algorithms achieve a considerable 7% improvement in the Mean Average Precision even with state-of-art collaborative filtering algorithms.\",\"PeriodicalId\":114454,\"journal\":{\"name\":\"Brazilian Symposium on Multimedia and the Web\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2664551.2664569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664551.2664569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文分析了集成算法在多元数据排序推荐问题中的应用。我们提出了三种不需要修改推荐算法的通用集成策略。他们将经过不同元数据训练的推荐者的预测组合成一个统一的推荐项目排名。提出的策略有:最快乐、最优和遗传算法加权。使用HetRec 2011 MovieLens 2k数据集和五种不同的元数据(类型、标签、导演、演员和国家)进行的评估表明,即使使用最先进的协同过滤算法,我们提出的集成算法也能在平均精度方面取得可观的7%的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Multiple Metadata Types in Movies Recommendation Using Ensemble Algorithms
In this paper, we analyze the application of ensemble algorithms to improve the ranking recommendation problem with multiple metadata. We propose three generic ensemble strategies that do not require modification of the recommender algorithm. They combine predictions from a recommender trained with distinct metadata into a unified rank of recommended items. The proposed strategies are Most Pleasure, Best of All and Genetic Algorithm Weighting. The evaluation using the HetRec 2011 MovieLens 2k dataset with five different metadata (genres, tags, directors, actors and countries) shows that our proposed ensemble algorithms achieve a considerable 7% improvement in the Mean Average Precision even with state-of-art collaborative filtering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信