E. Duff, T. Makin, Sasidhar S. Madugula, Stephen M. Smith, M. Woolrich
{"title":"脑动力学特征的部分相关的效用:基于mvpa的正则化和网络选择评估","authors":"E. Duff, T. Makin, Sasidhar S. Madugula, Stephen M. Smith, M. Woolrich","doi":"10.1109/PRNI.2013.24","DOIUrl":null,"url":null,"abstract":"Correlation and partial correlation are often used to provide a characterisation of the network properties of the human brain, based on functional brain imaging data. However, for partial correlation, the choice of network nodes (brain regions) and regularisation parameters is crucial and not yet well explored. Here we assess a number of approaches by calculating how each approach performs when used to discriminate different ongoing states of brain activity. We find evidence that partial correlation matrices, when estimated with appropriate regularisation, can provide a useful characterisation of brain functional connectivity.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Utility of Partial Correlation for Characterising Brain Dynamics: MVPA-based Assessment of Regularisation and Network Selection\",\"authors\":\"E. Duff, T. Makin, Sasidhar S. Madugula, Stephen M. Smith, M. Woolrich\",\"doi\":\"10.1109/PRNI.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlation and partial correlation are often used to provide a characterisation of the network properties of the human brain, based on functional brain imaging data. However, for partial correlation, the choice of network nodes (brain regions) and regularisation parameters is crucial and not yet well explored. Here we assess a number of approaches by calculating how each approach performs when used to discriminate different ongoing states of brain activity. We find evidence that partial correlation matrices, when estimated with appropriate regularisation, can provide a useful characterisation of brain functional connectivity.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utility of Partial Correlation for Characterising Brain Dynamics: MVPA-based Assessment of Regularisation and Network Selection
Correlation and partial correlation are often used to provide a characterisation of the network properties of the human brain, based on functional brain imaging data. However, for partial correlation, the choice of network nodes (brain regions) and regularisation parameters is crucial and not yet well explored. Here we assess a number of approaches by calculating how each approach performs when used to discriminate different ongoing states of brain activity. We find evidence that partial correlation matrices, when estimated with appropriate regularisation, can provide a useful characterisation of brain functional connectivity.