元学习中综合示例选择的迁移学习

Regina R. Parente, R. Prudêncio
{"title":"元学习中综合示例选择的迁移学习","authors":"Regina R. Parente, R. Prudêncio","doi":"10.5753/eniac.2018.4469","DOIUrl":null,"url":null,"abstract":"In Meta-learning, training examples are generated from experiments performed with a pool of candidate algorithms in a number of problems (real or synthetic). Generating a good set of examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labeling. In this paper, we focus on the selection of training meta-examples by combining data manipulation and Transfer Learning via One-class classification. So, the most relevant examples are selected to be labeled. Our experiments revealed that it is possible to reduce the computational cost of generating meta- examples and maintain the meta-learning performance.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transfer Learning for Synthetic Examples Selection in Meta-learning\",\"authors\":\"Regina R. Parente, R. Prudêncio\",\"doi\":\"10.5753/eniac.2018.4469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Meta-learning, training examples are generated from experiments performed with a pool of candidate algorithms in a number of problems (real or synthetic). Generating a good set of examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labeling. In this paper, we focus on the selection of training meta-examples by combining data manipulation and Transfer Learning via One-class classification. So, the most relevant examples are selected to be labeled. Our experiments revealed that it is possible to reduce the computational cost of generating meta- examples and maintain the meta-learning performance.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2018.4469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2018.4469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在元学习中,训练样例是通过在许多问题(真实的或合成的)中使用候选算法池进行的实验生成的。由于在某些领域真实数据集的可用性很低,并且标记的计算成本很高,因此生成一组好的示例可能很困难。在本文中,我们将数据处理和基于单类分类的迁移学习相结合,重点研究训练元示例的选择。因此,选择最相关的例子进行标记。我们的实验表明,它可以降低生成元示例的计算成本并保持元学习的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning for Synthetic Examples Selection in Meta-learning
In Meta-learning, training examples are generated from experiments performed with a pool of candidate algorithms in a number of problems (real or synthetic). Generating a good set of examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labeling. In this paper, we focus on the selection of training meta-examples by combining data manipulation and Transfer Learning via One-class classification. So, the most relevant examples are selected to be labeled. Our experiments revealed that it is possible to reduce the computational cost of generating meta- examples and maintain the meta-learning performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信