R. Kubota, Y. Tsutsumi, Yoshinao Matsubara, S. Suzuki, S. Kumagai
{"title":"核电站气动阀门执行机构地震试验结果(气动截止阀(筒型))","authors":"R. Kubota, Y. Tsutsumi, Yoshinao Matsubara, S. Suzuki, S. Kumagai","doi":"10.1115/pvp2019-93485","DOIUrl":null,"url":null,"abstract":"\n It is believed that air-operated globe valves are able to operate during and after earthquakes, leading to maximum accelerations beyond the existing allowable acceleration for nuclear power plants in Japan (6 × 9.8 m/s2). In this work, this assumption is verified using a resonance shaking table for seismic testing at acceleration levels of 20 × 9.8 m/s2 (see Ref. [1]). Results show that the active components used in existing air-operated globe valve designs remain operable at 22 × 9.8 m/s2 (horizontal (X and Y) and vertical (Z) directions).","PeriodicalId":180537,"journal":{"name":"Volume 8: Seismic Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Test Results of Air-Operated Valve Actuators for Nuclear Power Plants (Air-Operated Globe Valve (Cylinder Type))\",\"authors\":\"R. Kubota, Y. Tsutsumi, Yoshinao Matsubara, S. Suzuki, S. Kumagai\",\"doi\":\"10.1115/pvp2019-93485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is believed that air-operated globe valves are able to operate during and after earthquakes, leading to maximum accelerations beyond the existing allowable acceleration for nuclear power plants in Japan (6 × 9.8 m/s2). In this work, this assumption is verified using a resonance shaking table for seismic testing at acceleration levels of 20 × 9.8 m/s2 (see Ref. [1]). Results show that the active components used in existing air-operated globe valve designs remain operable at 22 × 9.8 m/s2 (horizontal (X and Y) and vertical (Z) directions).\",\"PeriodicalId\":180537,\"journal\":{\"name\":\"Volume 8: Seismic Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Seismic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Seismic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seismic Test Results of Air-Operated Valve Actuators for Nuclear Power Plants (Air-Operated Globe Valve (Cylinder Type))
It is believed that air-operated globe valves are able to operate during and after earthquakes, leading to maximum accelerations beyond the existing allowable acceleration for nuclear power plants in Japan (6 × 9.8 m/s2). In this work, this assumption is verified using a resonance shaking table for seismic testing at acceleration levels of 20 × 9.8 m/s2 (see Ref. [1]). Results show that the active components used in existing air-operated globe valve designs remain operable at 22 × 9.8 m/s2 (horizontal (X and Y) and vertical (Z) directions).