{"title":"聚光光伏的辐射冷却(会议报告)","authors":"P. Bermel","doi":"10.1117/12.2532033","DOIUrl":null,"url":null,"abstract":"Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 degrees C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. Using a model, we also estimate the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.","PeriodicalId":374404,"journal":{"name":"New Concepts in Solar and Thermal Radiation Conversion II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiative cooling for concentrating photovoltaics (Conference Presentation)\",\"authors\":\"P. Bermel\",\"doi\":\"10.1117/12.2532033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 degrees C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. Using a model, we also estimate the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.\",\"PeriodicalId\":374404,\"journal\":{\"name\":\"New Concepts in Solar and Thermal Radiation Conversion II\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Concepts in Solar and Thermal Radiation Conversion II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2532033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Concepts in Solar and Thermal Radiation Conversion II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2532033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiative cooling for concentrating photovoltaics (Conference Presentation)
Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 degrees C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. Using a model, we also estimate the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.