人脸识别使用字符串语法模糊k近邻

Payungsak Kasemsumran, S. Auephanwiriyakul, N. Theera-Umpon
{"title":"人脸识别使用字符串语法模糊k近邻","authors":"Payungsak Kasemsumran, S. Auephanwiriyakul, N. Theera-Umpon","doi":"10.1109/KST.2016.7440531","DOIUrl":null,"url":null,"abstract":"A string grammar fuzzy K-nearest neighbor is developed by incorporating 2 types of membership value into string grammar K-nearest neighbor. We apply these two string grammar fuzzy K-nearest neighbors in the face recognition system. The system provides 99.25%, 99.75%, 79.57%, 93.85%, and 100% in ORL, MIT-CBCL, Georgia Tech, FEI and JAFFE databases, respectively. Although, the results are satisfied, there are some limitations on the system. It is not scale-invariant. Also, the Levenshtein distance might create misperception between strings that are actually far apart but the calculated distance is small.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"5 Spec No 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Face recognition using string grammar fuzzy K-nearest neighbor\",\"authors\":\"Payungsak Kasemsumran, S. Auephanwiriyakul, N. Theera-Umpon\",\"doi\":\"10.1109/KST.2016.7440531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A string grammar fuzzy K-nearest neighbor is developed by incorporating 2 types of membership value into string grammar K-nearest neighbor. We apply these two string grammar fuzzy K-nearest neighbors in the face recognition system. The system provides 99.25%, 99.75%, 79.57%, 93.85%, and 100% in ORL, MIT-CBCL, Georgia Tech, FEI and JAFFE databases, respectively. Although, the results are satisfied, there are some limitations on the system. It is not scale-invariant. Also, the Levenshtein distance might create misperception between strings that are actually far apart but the calculated distance is small.\",\"PeriodicalId\":350687,\"journal\":{\"name\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"5 Spec No 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST.2016.7440531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

将两种类型的隶属度值合并到字符串语法k近邻中,建立了字符串语法模糊k近邻。我们将这两个字符串语法模糊k近邻应用到人脸识别系统中。系统在ORL、MIT-CBCL、Georgia Tech、FEI和JAFFE数据库中的准确率分别为99.25%、99.75%、79.57%、93.85%和100%。尽管结果令人满意,但该系统仍存在一定的局限性。它不是尺度不变的。此外,Levenshtein距离可能会在实际上相距很远但计算距离很小的弦之间产生误解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition using string grammar fuzzy K-nearest neighbor
A string grammar fuzzy K-nearest neighbor is developed by incorporating 2 types of membership value into string grammar K-nearest neighbor. We apply these two string grammar fuzzy K-nearest neighbors in the face recognition system. The system provides 99.25%, 99.75%, 79.57%, 93.85%, and 100% in ORL, MIT-CBCL, Georgia Tech, FEI and JAFFE databases, respectively. Although, the results are satisfied, there are some limitations on the system. It is not scale-invariant. Also, the Levenshtein distance might create misperception between strings that are actually far apart but the calculated distance is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信