RODNet:使用跨模态监督的雷达目标检测

Yizhou Wang, Zhongyu Jiang, Xiangyu Gao, Jenq-Neng Hwang, Guanbin Xing, Hui Liu
{"title":"RODNet:使用跨模态监督的雷达目标检测","authors":"Yizhou Wang, Zhongyu Jiang, Xiangyu Gao, Jenq-Neng Hwang, Guanbin Xing, Hui Liu","doi":"10.1109/WACV48630.2021.00055","DOIUrl":null,"url":null,"abstract":"Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract. In this paper, we propose a deep radar object detection network (RODNet), to effectively detect objects purely from the carefully processed radar frequency data in the format of range-azimuth frequency heatmaps (RAMaps). Three different 3D autoencoder based architectures are introduced to predict object confidence distribution from each snippet of the input RAMaps. The final detection results are then calculated using our post-processing method, called location-based non-maximum suppression (L-NMS). Instead of using burdensome human-labeled ground truth, we train the RODNet using the annotations generated automatically by a novel 3D localization method using a camera-radar fusion (CRF) strategy. To train and evaluate our method, we build a new dataset – CRUW, containing synchronized videos and RAMaps in various driving scenarios. After intensive experiments, our RODNet shows favorable object detection performance without the presence of the camera.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"RODNet: Radar Object Detection using Cross-Modal Supervision\",\"authors\":\"Yizhou Wang, Zhongyu Jiang, Xiangyu Gao, Jenq-Neng Hwang, Guanbin Xing, Hui Liu\",\"doi\":\"10.1109/WACV48630.2021.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract. In this paper, we propose a deep radar object detection network (RODNet), to effectively detect objects purely from the carefully processed radar frequency data in the format of range-azimuth frequency heatmaps (RAMaps). Three different 3D autoencoder based architectures are introduced to predict object confidence distribution from each snippet of the input RAMaps. The final detection results are then calculated using our post-processing method, called location-based non-maximum suppression (L-NMS). Instead of using burdensome human-labeled ground truth, we train the RODNet using the annotations generated automatically by a novel 3D localization method using a camera-radar fusion (CRF) strategy. To train and evaluate our method, we build a new dataset – CRUW, containing synchronized videos and RAMaps in various driving scenarios. After intensive experiments, our RODNet shows favorable object detection performance without the presence of the camera.\",\"PeriodicalId\":236300,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV48630.2021.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在恶劣的驾驶情况下,雷达通常比摄像头更强大,例如,弱/强照明和恶劣天气。然而,与相机捕获的RGB图像不同,来自雷达信号的语义信息明显难以提取。在本文中,我们提出了一种深度雷达目标检测网络(RODNet),该网络纯粹从经过精心处理的雷达频率数据中以距离-方位频率热图(RAMaps)的格式有效地检测目标。引入了三种不同的基于3D自编码器的架构来预测输入RAMaps的每个片段的对象置信度分布。然后使用我们的后处理方法计算最终的检测结果,称为基于位置的非最大抑制(L-NMS)。我们没有使用繁琐的人工标记的地面事实,而是使用一种新的3D定位方法使用相机-雷达融合(CRF)策略自动生成的注释来训练RODNet。为了训练和评估我们的方法,我们建立了一个新的数据集——CRUW,其中包含各种驾驶场景中的同步视频和RAMaps。经过大量的实验,我们的RODNet在没有相机存在的情况下显示出良好的目标检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RODNet: Radar Object Detection using Cross-Modal Supervision
Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract. In this paper, we propose a deep radar object detection network (RODNet), to effectively detect objects purely from the carefully processed radar frequency data in the format of range-azimuth frequency heatmaps (RAMaps). Three different 3D autoencoder based architectures are introduced to predict object confidence distribution from each snippet of the input RAMaps. The final detection results are then calculated using our post-processing method, called location-based non-maximum suppression (L-NMS). Instead of using burdensome human-labeled ground truth, we train the RODNet using the annotations generated automatically by a novel 3D localization method using a camera-radar fusion (CRF) strategy. To train and evaluate our method, we build a new dataset – CRUW, containing synchronized videos and RAMaps in various driving scenarios. After intensive experiments, our RODNet shows favorable object detection performance without the presence of the camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信