利用时空gabor滤波的实时视频风格化

Rui Wang, Ping Li, Bin Sheng, Hanqiu Sun, E. Wu
{"title":"利用时空gabor滤波的实时视频风格化","authors":"Rui Wang, Ping Li, Bin Sheng, Hanqiu Sun, E. Wu","doi":"10.1145/3013971.3013986","DOIUrl":null,"url":null,"abstract":"This paper describes a new video stylization approach that achieves non-photorealistic rendering effects by using highly efficient spatial-temporal Gabor filtering. An edge extraction algorithm is developed to detect long coherent edges, to which the human visual system is sensitive. A nonlinear diffusion is then applied to remove unimportant details. Our approach extends the optical flow computation for constructing the Gabor flow to represent pixel similarity, and to preserve the temporal coherence when applied to video sequences. In particular, our video stylization is designed in a spatiotemporal manner to achieve temporal coherence in resulting animations. Real-time performance is achieved through the highly parallel implementation on modern graphics hardware (GPU). Therefore, our video stylization can be naturally applied to real-time video communication and interactive video-based rendering. The experimental results have demonstrated the high-quality production of our real-time video stylization.","PeriodicalId":269563,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time video stylization using spatial-temporal gabor filtering\",\"authors\":\"Rui Wang, Ping Li, Bin Sheng, Hanqiu Sun, E. Wu\",\"doi\":\"10.1145/3013971.3013986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new video stylization approach that achieves non-photorealistic rendering effects by using highly efficient spatial-temporal Gabor filtering. An edge extraction algorithm is developed to detect long coherent edges, to which the human visual system is sensitive. A nonlinear diffusion is then applied to remove unimportant details. Our approach extends the optical flow computation for constructing the Gabor flow to represent pixel similarity, and to preserve the temporal coherence when applied to video sequences. In particular, our video stylization is designed in a spatiotemporal manner to achieve temporal coherence in resulting animations. Real-time performance is achieved through the highly parallel implementation on modern graphics hardware (GPU). Therefore, our video stylization can be naturally applied to real-time video communication and interactive video-based rendering. The experimental results have demonstrated the high-quality production of our real-time video stylization.\",\"PeriodicalId\":269563,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3013971.3013986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013971.3013986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种新的视频风格化方法,该方法通过使用高效的时空Gabor滤波来实现非真实感的渲染效果。针对人眼视觉敏感的长连贯边缘,提出了一种边缘提取算法。然后应用非线性扩散来去除不重要的细节。我们的方法扩展了构建Gabor流的光流计算,以表示像素相似性,并在应用于视频序列时保持时间相干性。特别是,我们的视频风格化以时空方式设计,从而在生成的动画中实现时间一致性。实时性能是通过在现代图形硬件(GPU)上的高度并行实现实现的。因此,我们的视频风格化可以很自然地应用于实时视频通信和基于视频的交互式渲染。实验结果证明了我们实时视频风格化的高质量产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time video stylization using spatial-temporal gabor filtering
This paper describes a new video stylization approach that achieves non-photorealistic rendering effects by using highly efficient spatial-temporal Gabor filtering. An edge extraction algorithm is developed to detect long coherent edges, to which the human visual system is sensitive. A nonlinear diffusion is then applied to remove unimportant details. Our approach extends the optical flow computation for constructing the Gabor flow to represent pixel similarity, and to preserve the temporal coherence when applied to video sequences. In particular, our video stylization is designed in a spatiotemporal manner to achieve temporal coherence in resulting animations. Real-time performance is achieved through the highly parallel implementation on modern graphics hardware (GPU). Therefore, our video stylization can be naturally applied to real-time video communication and interactive video-based rendering. The experimental results have demonstrated the high-quality production of our real-time video stylization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信