将选项集成到MAXQ中的多智能体分层强化学习

Jing Shen, Guochang Gu, Haibo Liu
{"title":"将选项集成到MAXQ中的多智能体分层强化学习","authors":"Jing Shen, Guochang Gu, Haibo Liu","doi":"10.1109/IMSCCS.2006.90","DOIUrl":null,"url":null,"abstract":"MAXQ is a new framework for multi-agent reinforcement learning. But the MAXQ framework cannot decompose all subtasks into more refined hierarchies and the hierarchies are difficult to be discovered automatically. In this paper, a multi-agent hierarchical reinforcement learning approach, named OptMAXQ, by integrating Options into MAXQ is presented. In the OptMAXQ framework, the MAXQ framework is used to introduce knowledge into reinforcement learning and the option framework is used to construct hierarchies automatically. The performance of OptMAXQ is demonstrated in two-robot trash collection task and compared with MAXQ. The simulation results show that the OptMAXQ is more practical than MAXQ in partial known environment","PeriodicalId":202629,"journal":{"name":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-Agent Hierarchical Reinforcement Learning by Integrating Options into MAXQ\",\"authors\":\"Jing Shen, Guochang Gu, Haibo Liu\",\"doi\":\"10.1109/IMSCCS.2006.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MAXQ is a new framework for multi-agent reinforcement learning. But the MAXQ framework cannot decompose all subtasks into more refined hierarchies and the hierarchies are difficult to be discovered automatically. In this paper, a multi-agent hierarchical reinforcement learning approach, named OptMAXQ, by integrating Options into MAXQ is presented. In the OptMAXQ framework, the MAXQ framework is used to introduce knowledge into reinforcement learning and the option framework is used to construct hierarchies automatically. The performance of OptMAXQ is demonstrated in two-robot trash collection task and compared with MAXQ. The simulation results show that the OptMAXQ is more practical than MAXQ in partial known environment\",\"PeriodicalId\":202629,\"journal\":{\"name\":\"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2006.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2006.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

MAXQ是一种新的多智能体强化学习框架。但是MAXQ框架不能将所有子任务分解为更精细的层次结构,而且层次结构难以自动发现。本文提出了一种多智能体分层强化学习方法——OptMAXQ,该方法将选项集成到MAXQ中。在OptMAXQ框架中,MAXQ框架用于将知识引入强化学习,option框架用于自动构建层次结构。在双机器人垃圾收集任务中验证了OptMAXQ的性能,并与MAXQ进行了比较。仿真结果表明,在部分已知环境下,OptMAXQ算法比MAXQ算法更实用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Hierarchical Reinforcement Learning by Integrating Options into MAXQ
MAXQ is a new framework for multi-agent reinforcement learning. But the MAXQ framework cannot decompose all subtasks into more refined hierarchies and the hierarchies are difficult to be discovered automatically. In this paper, a multi-agent hierarchical reinforcement learning approach, named OptMAXQ, by integrating Options into MAXQ is presented. In the OptMAXQ framework, the MAXQ framework is used to introduce knowledge into reinforcement learning and the option framework is used to construct hierarchies automatically. The performance of OptMAXQ is demonstrated in two-robot trash collection task and compared with MAXQ. The simulation results show that the OptMAXQ is more practical than MAXQ in partial known environment
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信