不确定分数阶四元数神经网络的鲁棒定时同步

Zhongwen Wu
{"title":"不确定分数阶四元数神经网络的鲁棒定时同步","authors":"Zhongwen Wu","doi":"10.23919/SICEISCS54350.2022.9754525","DOIUrl":null,"url":null,"abstract":"In this article, the robust fixed-time synchronization of uncertain fractional-order quaternion-valued neural networks(FQVNNs) is studied. By using direct analytical method and quaternion-valued inequality, a criterion for robust fixed-time synchronization is established, and the settling time for robust fixed-time synchronization is explicitly reckoned. Finally, the validity of the conclusions is illustrated via one numerical example.","PeriodicalId":391189,"journal":{"name":"2022 SICE International Symposium on Control Systems (SICE ISCS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust fixed-time synchronization of uncertain fractional-order quaternion-valued neural networks\",\"authors\":\"Zhongwen Wu\",\"doi\":\"10.23919/SICEISCS54350.2022.9754525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the robust fixed-time synchronization of uncertain fractional-order quaternion-valued neural networks(FQVNNs) is studied. By using direct analytical method and quaternion-valued inequality, a criterion for robust fixed-time synchronization is established, and the settling time for robust fixed-time synchronization is explicitly reckoned. Finally, the validity of the conclusions is illustrated via one numerical example.\",\"PeriodicalId\":391189,\"journal\":{\"name\":\"2022 SICE International Symposium on Control Systems (SICE ISCS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 SICE International Symposium on Control Systems (SICE ISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SICEISCS54350.2022.9754525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 SICE International Symposium on Control Systems (SICE ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICEISCS54350.2022.9754525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了不确定分数阶四元数神经网络(fqvnn)的鲁棒定时同步问题。利用直接解析法和四元数值不等式,建立了鲁棒定时同步的判据,并明确地计算了鲁棒定时同步的稳定时间。最后通过一个算例说明了所得结论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust fixed-time synchronization of uncertain fractional-order quaternion-valued neural networks
In this article, the robust fixed-time synchronization of uncertain fractional-order quaternion-valued neural networks(FQVNNs) is studied. By using direct analytical method and quaternion-valued inequality, a criterion for robust fixed-time synchronization is established, and the settling time for robust fixed-time synchronization is explicitly reckoned. Finally, the validity of the conclusions is illustrated via one numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信