小波分析对姿态照相信号处理中功率谱分布的影响

L. Iuppariello, G. D'Addio, G. Pagano, A. Biancardi, M. Romano, P. Bifulco, M. Cesarelli
{"title":"小波分析对姿态照相信号处理中功率谱分布的影响","authors":"L. Iuppariello, G. D'Addio, G. Pagano, A. Biancardi, M. Romano, P. Bifulco, M. Cesarelli","doi":"10.1109/MeMeA.2016.7533718","DOIUrl":null,"url":null,"abstract":"The preservation of stability and body coordination in humans is assured by the correct working of the postural control system. Usually, postural oscillations is measured by the magnitude of center of pressure (CoP) movement over time. The conventional parameters in frequency domain to quantify changes of the CoP dynamics are estimated using Fourier spectral methods. However, considering the non-stationarity of the CoP signals, the Fourier approach, which breaks a time series signal into various sine wave frequency components, is not adapt. Aim of this work is to compare the wavelet decomposition analysis and the Fourier analysis, in measuring the power spectral distribution of the CoP traces, derived by Sensoria fitness (SF) e-textile socks, in three different frequency bands. Although wavelets analysis (WLT) has shown as a better technique than Fourier (FFT) in the resolution of the CoP oscillatory components, the overall spectral power modifications in their principal frequency bands have not yet been described. Particularly, the spectral power has been calculated in bands I (0.02-0.1 Hz), II (0.2-0.3), III (0.3-0.6), in percent values of the total spectral power.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effects of wavelets analysis on power spectral distributions in posturographic signal processing\",\"authors\":\"L. Iuppariello, G. D'Addio, G. Pagano, A. Biancardi, M. Romano, P. Bifulco, M. Cesarelli\",\"doi\":\"10.1109/MeMeA.2016.7533718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preservation of stability and body coordination in humans is assured by the correct working of the postural control system. Usually, postural oscillations is measured by the magnitude of center of pressure (CoP) movement over time. The conventional parameters in frequency domain to quantify changes of the CoP dynamics are estimated using Fourier spectral methods. However, considering the non-stationarity of the CoP signals, the Fourier approach, which breaks a time series signal into various sine wave frequency components, is not adapt. Aim of this work is to compare the wavelet decomposition analysis and the Fourier analysis, in measuring the power spectral distribution of the CoP traces, derived by Sensoria fitness (SF) e-textile socks, in three different frequency bands. Although wavelets analysis (WLT) has shown as a better technique than Fourier (FFT) in the resolution of the CoP oscillatory components, the overall spectral power modifications in their principal frequency bands have not yet been described. Particularly, the spectral power has been calculated in bands I (0.02-0.1 Hz), II (0.2-0.3), III (0.3-0.6), in percent values of the total spectral power.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人体稳定性和身体协调性的保持是由姿势控制系统的正确工作来保证的。通常,体位振荡是通过压力中心(CoP)运动随时间的大小来测量的。利用傅立叶谱法估计了用于量化CoP动力学变化的常规频域参数。然而,考虑到CoP信号的非平稳性,将时间序列信号分解成多个正弦波频率分量的傅里叶方法并不适用。本研究的目的是比较小波分解分析和傅立叶分析在测量三个不同频段Sensoria fitness (SF)电子纺织袜子衍生的CoP走线的功率谱分布方面的差异。虽然小波分析(WLT)已被证明是一种比傅里叶(FFT)更好的技术,在CoP振荡分量的分辨率,总体频谱功率的修改在其主频段尚未被描述。特别是,以总频谱功率的百分比值计算了波段I (0.02-0.1 Hz), II (0.2-0.3), III(0.3-0.6)的频谱功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of wavelets analysis on power spectral distributions in posturographic signal processing
The preservation of stability and body coordination in humans is assured by the correct working of the postural control system. Usually, postural oscillations is measured by the magnitude of center of pressure (CoP) movement over time. The conventional parameters in frequency domain to quantify changes of the CoP dynamics are estimated using Fourier spectral methods. However, considering the non-stationarity of the CoP signals, the Fourier approach, which breaks a time series signal into various sine wave frequency components, is not adapt. Aim of this work is to compare the wavelet decomposition analysis and the Fourier analysis, in measuring the power spectral distribution of the CoP traces, derived by Sensoria fitness (SF) e-textile socks, in three different frequency bands. Although wavelets analysis (WLT) has shown as a better technique than Fourier (FFT) in the resolution of the CoP oscillatory components, the overall spectral power modifications in their principal frequency bands have not yet been described. Particularly, the spectral power has been calculated in bands I (0.02-0.1 Hz), II (0.2-0.3), III (0.3-0.6), in percent values of the total spectral power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信