流时间序列的高效相似性搜索

Maria Kontaki, A. Papadopoulos
{"title":"流时间序列的高效相似性搜索","authors":"Maria Kontaki, A. Papadopoulos","doi":"10.1109/SSDBM.2004.33","DOIUrl":null,"url":null,"abstract":"Query processing in data streams is a very important research direction. The challenge in a database of data streams is to provide efficient algorithms and access methods for query processing, taking into consideration the fact that the database changes continuously as new data arrive. Traditional access methods that continuously update the data are considered inefficient, due to the significant update costs. In this paper we present IDC-Index, an efficient technique for similarity query processing in streaming time sequences, which is based on a multidimensional access method enhanced with a deferred update policy and an incremental computation of the discrete Fourier transform (DFT), which is used as a feature extraction method. The method manages to reduce the number of false alarms examined and therefore achieves high answers/candidates ratio. Moreover, an extensive performance evaluation based on synthetic random walk and real time sequences have shown that the proposed technique outperforms significantly existing approaches for similarity range query processing.","PeriodicalId":383615,"journal":{"name":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Efficient similarity search in streaming time sequences\",\"authors\":\"Maria Kontaki, A. Papadopoulos\",\"doi\":\"10.1109/SSDBM.2004.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query processing in data streams is a very important research direction. The challenge in a database of data streams is to provide efficient algorithms and access methods for query processing, taking into consideration the fact that the database changes continuously as new data arrive. Traditional access methods that continuously update the data are considered inefficient, due to the significant update costs. In this paper we present IDC-Index, an efficient technique for similarity query processing in streaming time sequences, which is based on a multidimensional access method enhanced with a deferred update policy and an incremental computation of the discrete Fourier transform (DFT), which is used as a feature extraction method. The method manages to reduce the number of false alarms examined and therefore achieves high answers/candidates ratio. Moreover, an extensive performance evaluation based on synthetic random walk and real time sequences have shown that the proposed technique outperforms significantly existing approaches for similarity range query processing.\",\"PeriodicalId\":383615,\"journal\":{\"name\":\"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDBM.2004.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2004.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

数据流中的查询处理是一个非常重要的研究方向。数据流数据库面临的挑战是为查询处理提供有效的算法和访问方法,同时考虑到数据库随着新数据的到来而不断变化。由于更新成本高,持续更新数据的传统访问方法被认为效率低下。本文提出了一种高效的流时间序列相似性查询处理技术IDC-Index,该技术基于延迟更新策略增强的多维访问方法和作为特征提取方法的离散傅立叶变换(DFT)的增量计算。该方法设法减少了检查的假警报数量,因此实现了高答案/候选人比率。此外,基于合成随机漫步和实时序列的广泛性能评估表明,该技术明显优于现有的相似范围查询处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient similarity search in streaming time sequences
Query processing in data streams is a very important research direction. The challenge in a database of data streams is to provide efficient algorithms and access methods for query processing, taking into consideration the fact that the database changes continuously as new data arrive. Traditional access methods that continuously update the data are considered inefficient, due to the significant update costs. In this paper we present IDC-Index, an efficient technique for similarity query processing in streaming time sequences, which is based on a multidimensional access method enhanced with a deferred update policy and an incremental computation of the discrete Fourier transform (DFT), which is used as a feature extraction method. The method manages to reduce the number of false alarms examined and therefore achieves high answers/candidates ratio. Moreover, an extensive performance evaluation based on synthetic random walk and real time sequences have shown that the proposed technique outperforms significantly existing approaches for similarity range query processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信