在四连通图中,与顶点的度数大于4的边和可收缩边数的下界相关联的边

Q2 Mathematics
Shunsuke Nakamura, Yoshimi Egawa, Keiko Kotani
{"title":"在四连通图中,与顶点的度数大于4的边和可收缩边数的下界相关联的边","authors":"Shunsuke Nakamura,&nbsp;Yoshimi Egawa,&nbsp;Keiko Kotani","doi":"10.1016/j.endm.2018.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove that the number of 4-contractible edges (edges that after contraction do not change the connectivity of the initial graph) of a 4-connected graph <em>G</em> is at least <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mn>28</mn><mo>)</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mo>≥</mo><mn>5</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mo>≥</mo><mn>5</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the set of those vertices of <em>G</em> which have degree greater than or equal to 5.</p><p>This is the refinement of the result proved by Ando et al. [On the number of 4-contractible edges in 4-connected graphs, <em>J. Combin. Theory Ser. B</em> <strong>99</strong> (2009) 97–109].</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.005","citationCount":"0","resultStr":"{\"title\":\"Edges incident with a vertex of degree greater than four and a lower bound on the number of contractible edges in a 4-connected graph\",\"authors\":\"Shunsuke Nakamura,&nbsp;Yoshimi Egawa,&nbsp;Keiko Kotani\",\"doi\":\"10.1016/j.endm.2018.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove that the number of 4-contractible edges (edges that after contraction do not change the connectivity of the initial graph) of a 4-connected graph <em>G</em> is at least <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mn>28</mn><mo>)</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mo>≥</mo><mn>5</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mo>≥</mo><mn>5</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the set of those vertices of <em>G</em> which have degree greater than or equal to 5.</p><p>This is the refinement of the result proved by Ando et al. [On the number of 4-contractible edges in 4-connected graphs, <em>J. Combin. Theory Ser. B</em> <strong>99</strong> (2009) 97–109].</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318300969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318300969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了4连通图G的4可收缩边(收缩后不改变初始图连通性的边)的个数至少为(1/28)∑x∈V≥5(G)degG (x),其中V≥5(G)表示G的度大于或等于5的顶点的集合。这是对Ando等人证明的结果的改进。[关于4连通图中4可收缩边的数量,J. Combin。]Ser的理论。B . 99(2009): 97-109。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edges incident with a vertex of degree greater than four and a lower bound on the number of contractible edges in a 4-connected graph

In this paper, we prove that the number of 4-contractible edges (edges that after contraction do not change the connectivity of the initial graph) of a 4-connected graph G is at least (1/28)xV5(G)degG(x), where V5(G) denotes the set of those vertices of G which have degree greater than or equal to 5.

This is the refinement of the result proved by Ando et al. [On the number of 4-contractible edges in 4-connected graphs, J. Combin. Theory Ser. B 99 (2009) 97–109].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信