一阶插值和插值证明系统

L. Kovács, A. Voronkov
{"title":"一阶插值和插值证明系统","authors":"L. Kovács, A. Voronkov","doi":"10.29007/1qb8","DOIUrl":null,"url":null,"abstract":"It is known that one can extract Craig interpolants from so-called local derivations. An interpolant extracted from such a derivation is a boolean combination of formulas occurring in the derivation. However, standard complete proof systems, such as superposition, for theories having the interpolation property are not necessarily complete for local proofs. In this paper we investigate interpolant extraction from non-local refutations (proofs of contradiction) in the superposition calculus and prove a number of general results about interpolant extraction and complexity of extracted interpolants. In particular, we prove that the number of quantifier alternations in first-order interpolants of formulas without quantifier alternations is unbounded. The proof of this result relies on a small number of assumptions about the theory and the proof system, so it also applies to many first-order theories beyond predicate logic. This result has far-reaching consequences for using local proofs as a foundation for interpolating proof systems any such proof system should deal with formulas of arbitrary quantifier complexity. To search for alternatives for interpolating proof systems, we consider several variations on interpolation and local proofs. Namely, we give an algorithm for building interpolants from resolution refutations in logic without equality and discuss additional constraints when this approach can be also used for logic with equality. We finally propose a new direction related to interpolation via local proofs in first-order theories.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"First-Order Interpolation and Interpolating Proof Systems\",\"authors\":\"L. Kovács, A. Voronkov\",\"doi\":\"10.29007/1qb8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that one can extract Craig interpolants from so-called local derivations. An interpolant extracted from such a derivation is a boolean combination of formulas occurring in the derivation. However, standard complete proof systems, such as superposition, for theories having the interpolation property are not necessarily complete for local proofs. In this paper we investigate interpolant extraction from non-local refutations (proofs of contradiction) in the superposition calculus and prove a number of general results about interpolant extraction and complexity of extracted interpolants. In particular, we prove that the number of quantifier alternations in first-order interpolants of formulas without quantifier alternations is unbounded. The proof of this result relies on a small number of assumptions about the theory and the proof system, so it also applies to many first-order theories beyond predicate logic. This result has far-reaching consequences for using local proofs as a foundation for interpolating proof systems any such proof system should deal with formulas of arbitrary quantifier complexity. To search for alternatives for interpolating proof systems, we consider several variations on interpolation and local proofs. Namely, we give an algorithm for building interpolants from resolution refutations in logic without equality and discuss additional constraints when this approach can be also used for logic with equality. We finally propose a new direction related to interpolation via local proofs in first-order theories.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/1qb8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/1qb8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

众所周知,我们可以从所谓的局部导数中提取克雷格插值。从这样的推导中提取的插值是在推导中出现的公式的布尔组合。然而,对于具有插值性质的理论,标准的完全证明系统,如叠加,对于局部证明并不一定是完全的。本文研究了叠加微积分中的非局部反驳(矛盾性证明)的插值提取,并证明了一些关于插值提取和被提取插值的复杂性的一般结果。特别地,我们证明了无量词变换的公式的一阶插值中量词变换的数目是无界的。这个结果的证明依赖于关于理论和证明系统的少量假设,因此它也适用于谓词逻辑以外的许多一阶理论。这个结果对于使用局部证明作为插值证明系统的基础具有深远的影响,任何这样的证明系统都应该处理任意量词复杂性的公式。为了寻找插值证明系统的替代方案,我们考虑了插值和局部证明的几种变体。也就是说,我们给出了一种从不相等的逻辑中的解决反驳中构建插值的算法,并讨论了当这种方法也可用于具有相等的逻辑时的附加约束。最后,我们提出了一阶理论中通过局部证明进行插值的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Order Interpolation and Interpolating Proof Systems
It is known that one can extract Craig interpolants from so-called local derivations. An interpolant extracted from such a derivation is a boolean combination of formulas occurring in the derivation. However, standard complete proof systems, such as superposition, for theories having the interpolation property are not necessarily complete for local proofs. In this paper we investigate interpolant extraction from non-local refutations (proofs of contradiction) in the superposition calculus and prove a number of general results about interpolant extraction and complexity of extracted interpolants. In particular, we prove that the number of quantifier alternations in first-order interpolants of formulas without quantifier alternations is unbounded. The proof of this result relies on a small number of assumptions about the theory and the proof system, so it also applies to many first-order theories beyond predicate logic. This result has far-reaching consequences for using local proofs as a foundation for interpolating proof systems any such proof system should deal with formulas of arbitrary quantifier complexity. To search for alternatives for interpolating proof systems, we consider several variations on interpolation and local proofs. Namely, we give an algorithm for building interpolants from resolution refutations in logic without equality and discuss additional constraints when this approach can be also used for logic with equality. We finally propose a new direction related to interpolation via local proofs in first-order theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信