用于胃肠道监测的四极生物阻抗传感系统

P. Kassanos, H. Ip, Guang-Zhong Yang
{"title":"用于胃肠道监测的四极生物阻抗传感系统","authors":"P. Kassanos, H. Ip, Guang-Zhong Yang","doi":"10.1109/BSN.2015.7299403","DOIUrl":null,"url":null,"abstract":"Surgical Site Infection (SSI) imposes a significant burden clinically and compromises patient recovery. Anastomosis in the gastrointestinal (GI) tract is a particularly challenging case where failure of the anastomosis can lead to leakage, resulting in an increase in mortality rates. However early diagnosis and intervention are hampered by a lack of continuous sensing and long diagnostic intervals of current clinical practices. Tissue ischemia in the vicinity of the anastomosis has been found to be an early surrogate marker for anastomotic leakage. Electrical bio-impedance is a promising non-invasive technique for identifying and monitoring tissue ischemia. In this paper the modelling, design and validation of a bio-impedance system including compact instrumentation and a novel bio-impedance sensor optimized for mucosal tissue measurements in the GI tract are presented. The preliminary system, including the impedance probe, is validated experimentally for GI implant applications to provide early detection of tissue ischemia following GI surgery.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring\",\"authors\":\"P. Kassanos, H. Ip, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2015.7299403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surgical Site Infection (SSI) imposes a significant burden clinically and compromises patient recovery. Anastomosis in the gastrointestinal (GI) tract is a particularly challenging case where failure of the anastomosis can lead to leakage, resulting in an increase in mortality rates. However early diagnosis and intervention are hampered by a lack of continuous sensing and long diagnostic intervals of current clinical practices. Tissue ischemia in the vicinity of the anastomosis has been found to be an early surrogate marker for anastomotic leakage. Electrical bio-impedance is a promising non-invasive technique for identifying and monitoring tissue ischemia. In this paper the modelling, design and validation of a bio-impedance system including compact instrumentation and a novel bio-impedance sensor optimized for mucosal tissue measurements in the GI tract are presented. The preliminary system, including the impedance probe, is validated experimentally for GI implant applications to provide early detection of tissue ischemia following GI surgery.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

手术部位感染(SSI)在临床上造成了很大的负担,并损害了患者的康复。胃肠道吻合是一个特别具有挑战性的病例,吻合失败可能导致瘘,导致死亡率增加。然而,早期诊断和干预受到当前临床实践缺乏连续感知和长诊断间隔的阻碍。吻合口附近的组织缺血已被发现是吻合口瘘的早期替代标志。电生物阻抗是一种很有前途的无创组织缺血识别和监测技术。本文介绍了一种生物阻抗系统的建模、设计和验证,该系统包括紧凑型仪器和一种优化的用于胃肠道粘膜组织测量的新型生物阻抗传感器。初步系统,包括阻抗探针,在实验中验证了GI植入应用,以提供GI手术后组织缺血的早期检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tetrapolar bio-impedance sensing system for gastrointestinal tract monitoring
Surgical Site Infection (SSI) imposes a significant burden clinically and compromises patient recovery. Anastomosis in the gastrointestinal (GI) tract is a particularly challenging case where failure of the anastomosis can lead to leakage, resulting in an increase in mortality rates. However early diagnosis and intervention are hampered by a lack of continuous sensing and long diagnostic intervals of current clinical practices. Tissue ischemia in the vicinity of the anastomosis has been found to be an early surrogate marker for anastomotic leakage. Electrical bio-impedance is a promising non-invasive technique for identifying and monitoring tissue ischemia. In this paper the modelling, design and validation of a bio-impedance system including compact instrumentation and a novel bio-impedance sensor optimized for mucosal tissue measurements in the GI tract are presented. The preliminary system, including the impedance probe, is validated experimentally for GI implant applications to provide early detection of tissue ischemia following GI surgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信